
Bitcoin-NG: A Scalable Blockchain Protocol

Ittay Eyal Adem Efe Gencer Emin Gün Sirer Robbert van Renesse
Cornell University

Abstract

Cryptocurrencies, based on and led by Bitcoin, have shown promise as infrastructure for
pseudonymous online payments, cheap remittance, trustless digital asset exchange, and smart
contracts. However, Bitcoin-derived blockchain protocols have inherent scalability limits that
trade-off between throughput and latency and withhold the realization of this potential.

This paper presents Bitcoin-NG, a new blockchain protocol designed to scale. Based on
Bitcoin’s blockchain protocol, Bitcoin-NG is Byzantine fault tolerant, is robust to extreme churn,
and shares the same trust model obviating qualitative changes to the ecosystem.

In addition to Bitcoin-NG, we introduce several novel metrics of interest in quantifying the
security and efficiency of Bitcoin-like blockchain protocols. We implement Bitcoin-NG and per-
form large-scale experiments at 15% the size of the operational Bitcoin system, using unchanged
clients of both protocols. These experiments demonstrate that Bitcoin-NG scales optimally, with
bandwidth limited only by the capacity of the individual nodes and latency limited only by the
propagation time of the network.

1 Introduction

Bitcoin has emerged as the first widely-deployed, decentralized global currency, and sparked
hundreds of copycat currencies. Overall, cryptocurrencies have garnered much attention from
the financial and tech sectors, as well as academics, achieved wide market penetration in un-
derground economies [32], reached a $12B market cap and attracted close to $1B in venture
capital [13]. The core technological innovation powering these systems is the Nakamoto con-
sensus protocol for maintaining a distributed ledger known as the blockchain. The blockchain
technology provides a decentralized, open, Byzantine fault-tolerant transaction mechanism, and
promises to become the infrastructure for a new generation of Internet interaction, including
anonymous online payments [12], remittance, and transaction of digital assets [14]. Ongoing
work explores smart digital contracts, enabling anonymous parties to programmatically enforce
complex agreements [26, 49].

Despite its potential, blockchain protocols face a significant scalability barrier [45, 30, 17, 4].
The maximum rate at which these systems can process transactions is capped by the choice
of two parameters: block size and block interval. Increasing block size improves throughput,
but the resulting bigger blocks take longer to propagate in the network. Reducing the block
interval reduces latency, but leads to instability where the system is in disagreement and the
blockchain is subject to reorganization. To improve efficiency, one has to trade off throughput
for latency. Bitcoin currently targets a conservative 10 minutes between blocks, yielding 10
minute expected latencies for transactions to be encoded in the blockchain.1 The block size
is currently set at 1MB, yielding only 1 to 3.5 transactions per second for Bitcoin for typical

1On average, assuming no backlog, both block interval and the average time to wait for a block starting at any
time are ten minutes. This is a non-intuitive property of the memoryless exponential distribution.

1

ar
X

iv
:1

51
0.

02
03

7v
2

 [
cs

.C
R

]
 1

1
N

ov
 2

01
5

transaction sizes. Proposals for increasing the block size are the topic of heated debate within
the Bitcoin community [41].

In this paper, we present Bitcoin-NG, a scalable blockchain protocol, based on the same trust
model as Bitcoin. Bitcoin-NG’s latency is limited only by the propagation delay of the network,
and its bandwidth is limited only by the processing capacity of the individual nodes. Bitcoin-NG
achieves this performance improvement by decoupling Bitcoin’s blockchain operation into two
planes: leader election and transaction serialization. It divides time into epochs, where each
epoch has a single leader. As in Bitcoin, leader election is performed randomly and infrequently.
Once a leader is chosen, it is entitled to serialize transactions unilaterally until a new leader is
chosen, marking the end of the former’s epoch.

While this approach is a significant departure from Bitcoin’s operation, Bitcoin-NG main-
tains Bitcoin’s security properties. Implicitly, leader election is already taking place in Bitcoin.
But in Bitcoin, the leader is in charge of serializing history, making the entire duration of time
between leader elections a long system freeze. In contrast, leader election in Bitcoin-NG is
forward-looking, and ensures that the system is able to continually process transactions.

Evaluating the performance and functionality of new consensus protocols is a challenging
task. To help perform this quantitatively and provide a foundation for the comparison of
alternative consensus protocols, we introduce several metrics to evaluate implementations of the
Nakamoto consensus. These metrics capture performance metrics such as protocol goodput and
latency, as well as various aspects of its security, including its ability to maintain consensus and
resist centralization.

We evaluated the performance of Bitcoin-NG on a large emulation testbed consisting of 1000
nodes, amounting to over 15% of the current operational Bitcoin network [35]. This testbed
enables us to run unchanged clients, using realistic Internet latencies. We compare Bitcoin-NG
with the original Bitcoin client, and demonstrate the critical tradeoffs inherent in the original
Bitcoin protocol. Controlling for network bandwidth, reducing Bitcoin’s latency by decreasing
the block interval and improving its throughput by increasing the block size both yield adverse
effects. In particular, fairness suffers, giving large miners an advantage over small miners.
This anomaly leads to centralization, where the mining power tends to be used under a single
controller, breaking the basic premise of the decentralized cryptocurrency vision. Additionally,
mining power is lost, making the system more vulnerable to attacks. In contrast, Bitcoin-NG
improves latency and throughput to the maximum allowed by network conditions and node
processing limits, while avoiding the fairness and mining power utilization problems.

In summary, this paper makes three contributions. First, it outlines the Bitcoin-NG scal-
able blockchain protocol, which achieves significantly higher throughput and lower latency than
Bitcoin while maintaining the Bitcoin trust assumptions. Second, it introduces quantitative
metrics for evaluating Nakamoto consensus protocols. These metrics are designed to ground the
ongoing discussion over parameter selection in Bitcoin-derived currency. Finally, it quantifies,
through large-scale experiments, Bitcoin-NG’s robustness and scalability.

2 Model and Goal

The system is comprised of a set of nodes N connected by a reliable authenticated peer-to-peer
network. Each node can poll a random oracle [5] as a random bit source. Nodes can generate
key-pairs, but there is no trusted public key infrastructure.

The system employs an associated puzzle system, defined by a cryptographic hash func-
tion H. The solution to a puzzle defined by the string y is a string x such that H(y|x) —
the hash of the concatenation of the two — is smaller than some target. Each node i has a
limited amount of compute power, called mining power, measured by the number of potential
puzzle solutions it can try per second. A solution to a puzzle constitutes a proof of work, as it
statistically indicates the amount of work a node had to perform in order to find it.

At any time t, a subset of nodes B(t) ⊂ N are Byzantine and behave arbitrarily, controlled
by a single adversary. The other nodes are honest — they abide by the protocol. The mining
power of each node i is m(i). The mining power of the Byzantine nodes is less than 1/4 of the
total compute power at any given time:

∀t :
∑
b∈B(t)

m(b) <
1

4

∑
n∈N

m(n)

because proof-of-work blockchains, Bitcoin-NG included, are vulnerable to selfish mining by
attackers larger than 1/4 of the network [21].

Nakamoto Consensus

The nodes are to implement a replicated state machine (RSM) [28, 44]. Properties of the system
can be compared to those of classical consensus [40]:

Termination There exists a time difference function ∆(·) such that, given a time t and a value
0 < ε < 1, the probability is smaller than ε that at times t′, t′′ > t+ ∆(ε) a node returns
two different states for the machine at time t.

Agreement There exists a time difference function ∆(·) such that, given a 0 < ε < 1, the
probability that at time t two nodes returns different states for t−∆(ε) is smaller than ε.

Validity If the fraction of mining power of Byzantine nodes is bounded by f , ∀t :
∑

b∈B(t)m(b)∑
n∈N m(n) <

f , then the average fraction of state machine transitions that are not inputs of honest
nodes is smaller than f .

3 Bitcoin and its Blockchain Protocol

Bitcoin is a distributed, decentralized crypto-currency [6, 7, 8, 37], which implicitly defined
and implemented the Nakamoto consensus. Bitcoin uses the blockchain protocol to serialize
transactions of the Bitcoin currency among its users. The replicated state machine maintains
the balance of the different users, and its transitions are transactions that move funds among
them. This state machine is managed by the system nodes, called miners.

Each user commands addresses, and sends Bitcoins by forming a transaction from her address
to another’s address and sending it to the nodes. More explicitly, a transaction is from the
output of a previous transaction, to a specific address. An output is spent if it is the input of
another transaction. A client owns x Bitcoins at time t if the aggregate of unspent outputs to
its address is x. Transactions are protected with cryptographic techniques that ensure only the
rightful owner of a Bitcoin address can transfer funds from it. Miners accept transactions only
if their sources have not been spent, thereby preventing users from double-spending their funds.
The miners commit the transactions into a global append-only log called the blockchain.

The blockchain records transactions in units of blocks. Each block includes a unique ID,
and the ID of the preceding block. The first block, dubbed the genesis block, is defined as part
of the protocol. A valid block contains (1) a solution to a cryptopuzzle involving the hash of
the previous block, (2) the hash (specifically, the Merkle root) of the transactions in the current
block, which have to be valid, and (3) a special transaction, called the coinbase, crediting the
miner with the reward for solving the cryptopuzzle. This process is called Bitcoin mining, and,
by slight abuse of terminology, we refer to the creation of blocks as block mining. The specific
cryptopuzzle is a double-hash of the block header whose result has to be smaller than a set
value. The problem difficulty, set by this value, is dynamically adjusted such that blocks are
generated at an average rate of one every ten minutes.

Mining When a miner creates a block, she is compensated for her efforts with Bitcoins. This
compensation includes a per-transaction fee paid by the users whose transactions are included,
as well as an amount of new Bitcoins that did not exist before.

Forks Any miner may add a valid block to the chain by simply publishing it over an overlay
network to all other miners. If multiple miners create blocks with the same preceding block,
the chain is forked into branches, forming a tree. Other miners may subsequently add new valid
blocks to any of these branch. When a miner tries to add a new block after an existing block,
we say it mines on the existing block. If this block is a leaf of a branch, we say he mines on the
branch.

To resolve forks, the protocol prescribes on which chain the miners should mine. The criterion
is that the winning chain is the heaviest one, that is, the one that required (in expectancy) the
most mining power to generate. All miners add blocks to the heaviest chain of which they know,
with random tie-breaking.2 The heaviest chain a node knows is the serialization of RSM inputs
it knows, and hence describes the RSM’s state. The formation of forks is undesirable, as they
indicate that there is no globally-agreed RSM state.

Branches and blocks outside the main chain are called pruned.3 Transactions in pruned
blocks are ignored. They can be placed in the main chain at any later time, unless a contradicting
transaction (that spends the same outputs) was placed there in the meantime.

Block dissemination over the Bitcoin overlay network takes seconds, whereas the average
mining interval is ten minutes. Therefore, accidental bifurcation is rare. It occurs on average
once about every 60 blocks [16].

4 Bitcoin-NG

Bitcoin-NG is a blockchain protocol that serializes transactions, much like Bitcoin, but allows
for better latency and bandwidth without sacrificing other properties.

The protocol divides time into epochs. In each epoch, a single leader is in charge of serializing
state machine transitions. To facilitate state propagation, leaders generate blocks. The protocol
introduces two types of blocks: key blocks for leader election and microblocks that contain the
ledger entries. Each block has a header that contains, among other fields, the unique reference
of its predecessor, namely a cryptographic hash of the predecessor header.

The security of the protocol derives from its incentive compatibility, motivating the partici-
pants to follow the rules. We detail the operation of the protocol in this section and explain its
incentive system in Section 5.

4.1 Key Blocks and Leader Election

Key blocks are used to choose a leader. Like a Bitcoin block, a key block contains the reference
to the previous block, the current GMT time, a coinbase transaction to pay out the reward,
a target value, and a nonce field containing arbitrary bits. For a key block to be valid, the
cryptographic hash of its header must be smaller than the target value. Unlike Bitcoin, a key
block contains a public key that will be used in the subsequent microblocks.

As in Bitcoin, for a miner to generate a key block it must iterate through nonce values
until the crypto-puzzle condition is met. As a result, the interval between consecutive key
blocks is exponentially distributed. To maintain a set average rate, the difficulty is adjusted by
deterministically changing the target value based on the GMT time in the key block headers.

2Choosing a longest branch at random is suggested in [21]. The operational client currently chooses the first
branch it has heard of, making it more vulnerable (see [21] for details).

3Often confusingly referred to as orphans in informal discussions, despite their having a parent in the block tree.

𝑘2𝑘1 𝑘1

10 minutes
10 seconds

𝑘1 𝐾2𝐾1

fees 60%40%

Figure 1: Structure of the Bitcoin-NG chain. Microblocks (circles) are signed with the private key
matching the public key in the last key block (squares). Fee is distributed 40% to the leader and
60% to the next one.

2 3

1’

1

2’

Figure 2: When microblocks are frequent, short forks occur on almost every leader switch.

In case of a fork, the chain is defined to be the one which represents the most work done,
aggregated over all key blocks, with random tie breaking.

4.2 Microblocks

Once a node generates a key block it becomes the leader. As a leader, the node is allowed to
generate microblocks at a set rate smaller than a predefined maximum. The maximum rate
is deterministic, and can be much higher than the average interval between key blocks. The
size of microblocks is bounded by a predefined maximum. Specifically, if the timestamp of a
microblock is in the future, or if its difference with its predecessor’s timestamp is smaller than
the minimum, then the microblock is invalid. This bound prohibits a leader (malicious, greedy,
or broken) from swamping the system with microblocks.

A microblock contains ledger entries and a header. The header contains the reference to
the previous block, the current GMT time, a cryptographic hash of its ledger entries, and a
cryptographic signature of the header. The signature uses the private key that matches the
public key in the latest key block in the chain. For a microblock to be valid, all its entries must
be valid according to the specification of the state machine, and the signature has to be valid.
Figure 1 illustrates the structure.

Note that microblocks do not affect the weight of the chain, as they do not contain proof of
work. This is critical for maintaining the incentives aligned, as we explain in Section 5.

4.3 Confirmation Time

When a miner generates a key block, he may not have heard of all microblocks generated by the
previous leader. If microblock generation is frequent, this can be the common case on leader
switching. The result is a short microblock fork, as illustrated in Figure 2. This fork is observed
by any node that receives the to-be-pruned microblock (blocks 1’ and 2’ in the figure) before the
new key block (block 1 in the figure). It is resolved once the key block propagates to that node.
Therefore, a user that sees a microblock should wait for the propagation time of the network
before considering it in the chain, to make sure it is not pruned by a new key block.

4.4 Remuneration

To motivate mining, a leader is compensated for her efforts by the protocol. Remuneration is
comprised of two parts. First, each key block entitles its generator a set amount. Second, each
ledger entry carries a fee. This fee is split by the leader that places this entry in a microblock,
and the subsequent leader that generates the next key block. Specifically, the current leader
earns 40% of the fee, and the subsequent leader earns 60% of the fee, as illustrated in Figure 1.
The choice of this distribution is explained in Section 5.

In practice, the remuneration is implemented by having each key block contain a single
coinbase transaction that mints new coins and deposits the funds to the current and previous
leaders. As in Bitcoin, this transaction can only be spent after a maturity period of 100 blocks,
to avoid non-mergeable transactions following a fork.

4.5 Microblock Fork Prevention

Since microblocks do not require mining, they can cheaply and quickly be generated by the
leader, allowing it to split the brain of the system, publishing different replicated-state-machine
states to different machines. This allows for double spending attacks, where different nodes
believe the same coins were spent with different transactions.

To demotivate such behavior, we use a dedicated ledger entry that invalidates the revenue of
fraudulent leaders. Such entries have been used in different contexts [19, 3, 11]. In Bitcoin-NG,
the entry is called a poison transaction, and it contains the header of the first block in the
pruned branch as a proof of fraud. The poison transaction has to be placed after the subsequent
key block, and before the revenue is spent by the malicious leader. Besides invalidating the
compensation sent to the leader that generated the fork, a poison transaction grants the current
leader a fraction of that compensation, e.g., 5%. The choice of this value is explained in Section 5.

Only one poison transaction can be placed per cheater, even if the cheater creates many
forks. The cheater’s revenue funds not relayed to the poisoner are lost.

5 Security Analysis

5.1 Incentives

Miners with capacity smaller than 1/4 of the total network are incentivized to follow the protocol.
Specifically, miners are motivated to (1) include transactions in their microblocks, (2) extend
the heaviest chain, and (3) extend the longest chain. Unlike Bitcoin, the latter two points are
not identical.

Heaviest Chain Extension The motivation for extending the heaviest chain is the same as
in Bitcoin. Since the majority will extend the heaviest chain, it will remain the main chain with
high probability. A minority choosing to mine on another branch will not catch up, therefore it
will mine on the main chain to ensure its revenues.4 Bitcoin-NG therefore achieves the Nakamoto
consensus Termination and Agreement under the postulate that Bitcoin does [34].

Microblocks carry no weight, not even as a secondary index. If they did, it would increase
the system’s vulnerability to selfish mining [20, 38, 43]. In selfish mining, an attacker withholds
blocks it has mined and publishes them judiciously to obtain superior presence in the main
chain. If microblocks had carried weight, an attacker could keep secret microblocks and gain
advantage by mining on microblocks unpublished to anyone else.

We conclude that Bitcoin-NG does not introduce a new vulnerability to selfish mining strate-
gies, and so Bitcoin-NG is resilient to selfish mining against attackers with less than 1/4 of the

4A majority may arbitrarily switch to any branch and win [27].

mining power. Bitcoin-NG therefore achieves the Nakamoto consensus validity under the pos-
tulate that Bitcoin does.

Transaction Inclusion A leader earns 40% of a transaction’s revenue by placing it in a
microblock. However, he could potentially improve his revenue by secretly trying to earn 100%
of the fee. To do so, first, the leader creates a microblock with the transaction, but does not
publish it. Then, he tries to mine on top of this secret microblock, while other miners mine on
older microblocks. If the leader succeeds in mining the subsequent key block, he obtains 100%
of the transaction fees. Otherwise, he waits until the transaction is placed in a microblock by
another miner and tries to mine on top of it.

Denote by rleader the revenue of the leader from a transaction, leaving (1 − rleader) for the
next miner. In Bitcoin-NG we have rleader = 40%. The value of rleader has to be such that the
average revenue of a miner trying the above is smaller than his revenue placing the transaction
in a public microblock as it should:

Win 100%︷ ︸︸ ︷
α× 100% +

Lose 100%, but mine after txn︷ ︸︸ ︷
(1− α)× α× (100%− rleader) < rleader ,

therefore rleader > 1 − 1−α
1+α−α2 . Assuming the power of an attacker is bounded by 1/4 of the

mining power, we obtain rleader > 37%, hence rleader = 40% is within range.

Longest Chain Extension To increase his revenue from a transaction, a miner could
avoid the transaction’s microblock and mine on a previous block. Then he would place the
transaction in its own microblock and try mining the subsequent key block. His revenue in this
case must be smaller than his revenue by mining on the transaction’s microblock as prescribed:

Place in
microblock︷ ︸︸ ︷
rleader +

Mine next
key block︷ ︸︸ ︷

α(100%− rleader) <

Mine on existing
microblock︷ ︸︸ ︷

100%− rleader ,

therefore rleader <
1−α
2−α . Assuming the power of an attacker is bounded by 1/4 of the mining

power, we obtain rleader < 43%, hence rleader = 40% is within range.

Optimal Network Assumption One may assume a zero latency network where an at-
tacker cannot rush messages — receive a message and send its own such that other nodes receive
the attacker’s message before the original one. Under such assumptions, Bitcoin is believed to
be secure against selfish mining attackers of size up to almost 1/3 [43]. However, for Bitcoin-NG,
due to the conditions above, we obtain rleader > 45% and rleader < 40%, leaving no intersection.
Under such optimal network assumptions, Bitcoin’s blockchain is therefore more resilient than
Bitcoin-NG.

Bypassing Fee Distribution We note that a user can circumvent the 40−60% transaction
fee distribution by paying no transaction fee, and instead paying the current leader directly,
using the coinbase address of the leader’s key block. However, a user does not gain a significant
advantage by doing so. As we have seen above, paying only the current leader increases the
direct motivation of the current leader to place the transaction in a microblock, but reduces the
motivation of future miners to mine on this microblock. Moreover, if the leader does not include
the transaction before the end of its epoch, subsequent leaders will have no motivation to place
the transaction.

Other motives for fee manipulation such as paying a large fee to encourage miners to choose
a certain branch after a fork apply to Bitcoin as well as Bitcoin-NG, and are outside the scope
of this work.

5.2 Other concerns

Wallet Security The possibility of placing a poison transaction allows an attacker that
obtains a leader’s private key to revoke his revenue retroactively and earn a small amount.
However, such an attacker is better off trying to steal the full leader’s revenue when it be-
comes available, therefore the introduction of the poison transaction does not add a significant
vulnerability.

Censorship Resistance A central goal of Bitcoin is to prevent a malicious discriminating
miner from dropping a user’s transactions.

First, we note that a leader’s absolute power is limited to his epoch of leadership. A malicious
leader can perform a DoS attack by placing no transactions in microblocks. Similarly, a benign
leader that crashes during his epoch of leadership will publish no microblocks. Their influence
ends once the next leader publishes his key block. The impact of such behaviors is therefore
similar to that in Bitcoin, where nodes may mine empty blocks, but rarely do.

Assuming an honest majority and no backlog, a user will have her transaction placed in the
first block generated by an honest miner. At least 3/4 of the blocks are generated by honest
miners, therefore the user will have to wait for 4/3 blocks on average, or 13.33 minutes. The
frequent microblocks of Bitcoin-NG do not improve censorship resistance. Key block intervals
can be set to a rate that would reduce censorship to the minimum allowed by the network
without incurring prohibitive deterioration of other metrics.

Resilience to Mining Power Variation Following Bitcoin’s success, hundreds of alter-
native currencies were created [50], most with Bitcoin’s exact blockchain structure, and many
with the same proof-of-work mechanism. To maintain a stable rate of blocks, different instances
of the Blockchain tune their proof of work difficulty at different rates: Bitcoin once every 2016
blocks – about 2 weeks, Litecoin [31] every 2016 blocks (produced at a higher rate) – about
3.5 days, and Ethereum [49] on every block – about 12 seconds. However, whichever adjust-
ment rate is chosen, these protocols are all sensitive to sudden mining power drops. Such drops
happen when miners are incentivized to stop mining due to a drop in the currency’s exchange
rate, or to mine for a different currency that becomes more profitable due to a change in mining
difficulty or exchange rate of either currency. Such changes are especially problematic for small
alt-coins. When their value rises, they observe a rapid rise in mining power as miners flock
to reap easy revenues. Then, once the difficulty rises, the miners move on to mine on more
profitable alt-coins and the mining power of the former drops. Now, since the difficulty is high,
the remaining miners will need a longer time to generate the next block, potentially orders of
magnitude longer.

In Bitcoin-NG, difficulty adjustments can create a similar problem, however it only affects
key blocks. Microblocks are generated at the same constant rate. As a consequence, in case of
a sudden mining power drop, Bitcoin-NG’s censorship resistance is reduced, as key blocks are
generated infrequently. If a malicious miner becomes leader, it will generate microblocks until
an honest leader finds a key block. Nevertheless, transaction processing continues at the same
rate, in microblocks. Additionally, even until the difficulty is tuned to a correct value, the ratio
of time during which malicious miners are leaders remains proportional to their mining power.

Forks When issuing microblocks at a high frequency, Bitcoin-NG observes a fork almost on
every key block generation, as the previous leader keeps generating microblocks until it receives
the key block (Figure 2). These forks are resolved quickly — once the new key block arrives at a
node, it switches to the new leader. In comparison, when running Bitcoin at such high frequency,
forks are only resolved by the heaviest chain extension rule, and since different miners may mine
on different branches, branches remain extant for a longer time compared to Bitcoin-NG.

3 4

1

2’

2

3’ 4’ 5’ 6’

5 6 7

7’ 8’

Figure 3: Key block fork. Blocks 2 and 3’ have the same chain weight, and the fork is not resolved
until key block 7 is generated.

Δ1

𝑎:

𝑏: 3

𝑐:

1

2 31

Δ2

𝑡2𝑡1

21

2

Figure 4: Point-consensus delay example with three Bitcoin nodes a, b, and c that generate blocks
at heights 1, 2, and 3 (explosions) and learn that these blocks are in the main chain (clouds).
Intervals ∆1 and ∆2 are the 2/3-point consensus delays at times t1 and t2, respectively.

However, Bitcoin-NG may experience key block forks, where more than one key blocks is
generated after the same prefix of key blocks, as shown in Figure 3. This rarely happens, due
to low frequency and quick propagation of the small key blocks. However, the duration of the
fork in this case may be very long, because it is only resolved on the next key block generation.
The result is therefore infrequent, but long, key block forks.

Although such long forks are undesirable, they are not dangerous. The knowledge of the
fork is propagated through the network, and once it reaches the nodes, they are aware of the
undetermined state. All transactions that appear only on one branch are therefore uncertain,
until one branch gains a lead.

6 Metrics

We now detail the metrics we shall use to evaluate Bitcoin and Bitcoin-NG. These metrics are
designed to evaluate the unique properties of the Nakamoto consensus.

Consensus Delay Intuitively, consensus delay is the time it takes for a system to reach
agreement. We start by defining, for a specific execution and time, how long back nodes have
to look to find a point where they agree on the state.

In a specific execution of an algorithm, given a time t and a ratio 0 < ε ≤ 1, the ε point
consensus delay is the smallest time difference ∆ such that at least ε · |N | of the nodes at time t
report the same state machine transition prefix up to time t −∆. An example for the Bitcoin
protocol is illustrated in Figure 4.

The consensus delay is the best point-consensus-delay the system achieves for a certain
fraction of the time, on average. More formally, the (ε, δ) consensus delay of a system is the δ-
percentile ε-point-consensus-delay. For example, if during at least 90% of the time, at least 50%
of the nodes agree on the state of the state machine 10 seconds ago, then the (50%, 90%)-
consensus delay is 10 seconds.

Time to prune

3 4
1

2’
0

𝑡
Time to win

2

3’

Figure 5: The time-to-prune and time-to-win metrics.

Fairness We calculate two ratios: (1) the ratio of transitions not coming from the largest
miner with respect to all transitions, and (2) the ratio of mining power not owned by the largest
miner with respect to all mining power. We call the ratio of these ratios the fairness.

Optimally the fairness is 1.0: The largest miner and the non-largest miners’ representation
in the transitions set should be the same as their respective mining powers.

Mining Power Utilization The security of a proof-of-work system derives from the mining
power used to secure it; that is, the mining power an attacker has to outrun in order to obtain
disproportionate control. The mining power utilization is the ratio between the mining power
that secures the system and the total mining power. Mining power wasted on work that does
not appear on the blockchain accounts for the difference.

Subjective Time to Prune Due to the probabilistic nature of the Nakamoto consensus, a
node may learn of a state machine transition and subsequently learn that this transition has not
occurred – that it was pruned from history. This is the case with pruned branches in Bitcoin.

The δ time to prune is the δ-percentile of the difference between the time a node learns about
such a transition and the time it learns that this transition has not occurred. This implies what
time a user has to wait to be confident a transition has occurred. Figure 5 illustrates an example
for the Bitcoin protocol.

Time to Win The δ time to win is the δ percentile of the difference between the first time a
node believes a never-to-be-pruned-transition has occurred and the last time a (different) node
disagrees, believing an alternative transition has occurred. It is zero if the latter time is earlier.
Figure 5 illustrates an example for the Bitcoin protocol.

7 Experimental Setup

We evaluate Bitcoin and Bitcoin-NG with 1000-node experiments on an emulated network.

Implementation For Bitcoin we run the standard client (release 0.10.0), hereinafter Bitcoin,
with minimal instrumentation to log sufficient information.

We implemented all Bitcoin-NG elements that are significant for a performance analysis
in the absence of an adversary, by modifying the standard Bitcoin client (release 0.10.0). We
did not implement the fee distribution and the microblock signature check. Both elements
have negligible implication on performance — fee distribution requires about one fixed point
operation per transaction and signature checking adds several milliseconds per microblock.

Simulated Mining The time it takes a miner to find a solution follows a geometric prob-
ability distribution, which can be approximated as an exponential distribution due to the im-
probability of a success in each guess and the rate of guessing.

0

10%

20%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
a
ti

o
 o

f
 M

in
in

g
 P

o
w

e
r

Mining Pools (Descending Mining Power)

Figure 6: Error bars represent the 75th, 50th and 25th percentiles of the corresponding batch.

In our experiments we replace the proof of work mechanism with a scheduler that triggers
block generation at different miners with exponentially distributed intervals. This is imple-
mented using the regression-test mode of the standard Bitcoin client [6] and an in-situ controller.
In regression-test mode, the client skips the block difficulty validation and accepts blocks with
any difficulty. It also accepts commands to instantly generate a block, which the scheduler uses.

Mining Power The probability of mining a block is proportional on average to the mining
power used for solving the cryptopuzzle. Since blocks are generated at average set intervals and
the total amount of mining power is large, the interval between block generation events of a
small miner is extremely large. A single home miner using dedicated hardware is unlikely to
mine a block for years [48].

Consequently, mining power tends to centralize in the form of industrial mining and open
mining pools. Industrial miners are companies that operate large-scale mining facilities. Smaller
miners that run private mining rigs typically join forces and form mining pools. All members of
a pool work together to mine each block, and share their revenues when one of them successfully
mines a block.

To reflect in our setup the varying power of miners, we examined the power distribution in
Bitcoin mining entities. The information we require for the analysis, the identity of the entities
generating each block, is voluntarily provided by miners. We used a public API [9] to gather
this information for the year ending on August 31, 2015. We note that about 9% of the blocks
are unidentified. We considered each such block as generated by a different individual miner.

For each week of the year, we calculate the weekly mining power of each entity, and assign
rank 1 to the largest weekly mining power, rank 2 for the second largest, and so on. Figure 6
shows the weekly mining power of each entity by rank up to 20. Bars of the same shade at
different ranks show the distribution of a specific week. Each batch of bars represents the
collection of ratios for the nth highest block generating pool. We note that the ranks of different
entities is not preserved throughout the weeks. The y-axis represents the weekly ratio of blocks
generated by a pool.

To model the size distribution of mining entities, we approximate it with an exponential
distribution with an exponent of −0.27. It yields a 0.99 coefficient of determination compared
with the medians of each rank.

Network The structure of Bitcoin’s overlay network is complicated, and much of it is inten-
tionally hidden to preserve Bitcoin’s security against denial of service (DoS) and to maintain
participants’ privacy (see [25, 35] for details on the peer-to-peer network). Nodes do not reveal
their neighbors, only a superset that includes nodes they have heard of. Many of the nodes are
hidden behind firewalls making it difficult to even estimate the full size of the network. The

 0
 5

 10
 15
 20
 25
 30
 35
 40

20k 40k 60k 80k 100k
P
ro

p
a
g

a
ti

o
n

La
te

n
cy

 [
se

c]
Block Size [Byte]

Percentile 25
Percentile 50
Percentile 75

Figure 7: In our system, block propagation time grows linearly with block size. This qualitatively
matches the linear relation observed in measurements of the operational Bitcoin network [16].

latency among nodes is unknown. Moreover, for many of the metrics that we measure, a critical
question is the time it takes between the mining of a block by some miner and the time it is
being mined on by another miner. For this to happen, the block not only has to be propagated
and verified by the second miner, but that second miner must also propagate the details to its
mining hardware. In the case of mining pools with many distant worker miners, this may incur
a non-negligible delay.

Lacking an existing model of the system, we construct a random network by connecting
each node to at least 5 other nodes, chosen uniformly at random. We measured the latency to
all visible Bitcoin nodes from a single vantage point on April 7th, 2015, and created a latency
histogram. We then set the latency among each pair of nodes in the experiments based on this
histogram. The bandwidth is set to about 100kbit/sec among each pair of nodes.

To verify the validity of our setup and topology, we compare Bitcoin’s propagation properties
in our setup and in the operational system. We perform experiments with different block sizes
while changing the block frequency so that the transaction-per-second load is constant. Figure 7
shows a linear relation between the block size and the propagation time, similar to the linear
relation measured in the Bitcoin operational network by Decker and Wattenhofer [16].

No Transaction Propagation The goal of this work is to optimize the consensus mech-
anism of the Blockchain. However, when generating blocks at high frequencies, the overhead
of filling in the blocks by generating and propagating transactions becomes a dominant factor
with Bitcoin’s current implementation. This is not an inherent property of Bitcoin’s protocol,
or of a Blockchain protocol in general. In order to reduce the noise caused by the transaction
generation and propagation mechanism, we reduce transaction handling to the minimum. Be-
fore starting an experiment, we initialize the blockchain with artificial transactions and top up
the mempools (the data structure storing yet to be serialized transactions) of all nodes with the
same set of independent transactions that can be serialized in arbitrary order. The transactions
are of identical size; the operational Bitcoin system as of today, at 1MB blocks every 10 minutes,
has a bandwidth of 3.5 such transactions per second.

 0
 50

 100
 150
 200
 250
 300
 350
 400

0.01 0.1 1

T
im

e
 t

o
 P

ru
n
e
 [

se
c]

(p
e
rc

e
n
ti

le
 9

0
)

Block Frequency [1/sec]

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0.01 0.1 1

T
im

e
 t

o
 W

in
 [

se
c]

(p
e
rc

e
n
ti

le
 9

0
)

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1

M
in

in
g
 P

o
w

e
r

U
ti

liz
a
ti

o
n

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1

Fa
ir

n
e
ss

 1

 10

 100

 0.01 0.1 1

C
o
n
se

n
su

s
La

te
n
cy

 [
se

c]

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0.01 0.1 1

T
ra

n
sa

ct
io

n
 F

re
q
u
e
n
cy

Bitcoin
Bitcoin-NG

(a) Reducing latency

 0

 50

 100

 150

 200

 250

 300

1280 2.5k 5k 10k 20k 40k 80k

T
im

e
 t

o
 P

ru
n
e
 [

se
c]

Block Size [Byte, log scale]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1280 2.5k 5k 10k 20k 40k 80k

T
im

e
 t

o
 W

in
 [

se
c]

(p
e
rc

e
n
ti

le
 9

0
)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1280 2.5k 5k 10k 20k 40k 80k

M
in

in
g
 P

o
w

e
r

U
ti

liz
a
ti

o
n

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

1280 2.5k 5k 10k 20k 40k 80k

Fa
ir

n
e
ss

 0

 50

 100

 150

 200

 250

1280 2.5k 5k 10k 20k 40k 80k

C
o
n
se

n
su

s
La

te
n
cy

 [
se

c]

 0

 2

 4

 6

 8

 10

 12

 14

1280 2.5k 5k 10k 20k 40k 80k

T
ra

n
sa

ct
io

n
 F

re
q
u
e
n
cy

Bitcoin
Bitcoin-NG

(b) Increasing throughput

Figure 8: Experiment results

8 Evaluation

We evaluate Bitcoin-NG and compare it with Bitcoin in two sets of experiments, varying block
frequency and block size.

We observe that it is possible to improve Bitcoin’s consensus delay and bandwidth by tuning
its parameters, but its performance deteriorates dangerously on all security-related metrics.
Bitcoin-NG qualitatively outperforms Bitcoin, as it suffers no such deterioration, while enjoying
superior performance in almost all metrics across the entire measured range.

The bandwidth of Bitcoin-NG is only limited by the processing speed of the individual nodes,
as higher throughput does not introduce forks. The consensus delay is determined directly by
the network propagation time, because in the common case all nodes agree on the main chain
once they receive the latest key block.

Metrics For each execution we run for 50-100 Bitcoin blocks or Bitcoin-NG microblocks and,
for each experiment, measure the metrics we introduced as follows:

Consensus delay We take the (90%, 90%)-consensus delay based on block generation times.
Point-consensus-delay for Bitcoin is illustrated in Figure 4.

Fairness We calculate the proportion of (1) the ratio of blocks in the main chain not generated
by the largest miner with respect to all blocks in the main chain, and (2) the ratio of
blocks not generated by the largest miner with respect to all generated blocks.

Mining power utilization We calculate the proportion between the aggregate work of the
main chain blocks and all blocks. In Bitcoin-NG, difficulty is only accrued in key blocks,
so microblock forks do not reduce mining power utilization.

Time to prune For each node and for each branch, we measure the time it took for the node
to prune this branch. This is the time between the receipt of the first branch block and
the receipt of the main chain block that is longer than this branch (Figure 5). We take
the 90th percentile of all samples.

Time to win We take the 90th percentile of the time from the generation of each main-chain
block to the last time another miner generates a block that is not its descendant (Figure 5).

Figures We run multiple experiments with different parameters. The figures show the average
value for each group of measurements with error bars marking the extreme values. The sampled
values are shown as markers.

8.1 Block Frequency

First, we run experiments targeted at improving the consensus delay. For Bitcoin, we vary
the frequency of block generation by reducing the proof-of-work difficulty. For Bitcoin-NG,
keeping the key block generation at one every 100 seconds, we vary the frequency of microblock
generation. For each frequency, we choose the block size (microblock size for Bitcoin-NG) such
that the payload throughput is identical to that of Bitcoin’s operational system, that is, one 1MB
block every 10 minutes. Figure 8 shows the results.

We confirm that the bandwidth, measured as transaction frequency, is close to 3.5, the
operational Bitcoin rate of for such transactions. In our experiments, Bitcoin’s bandwidth is
smaller than that of Bitcoin-NG, giving Bitcoin a small advantage.

As expected, a higher block frequency reduces Bitcoin’s consensus latency as transactions
are placed in the ledger at a higher frequency. Time to prune improves significantly as block
frequency increases. Nevertheless, Bitcoin’s frequent forks leave it with higher consensus latency
and time to prune than Bitcoin-NG. We note that although they can be made arbitrarily rare,

key block forks do occur. Such key-block forks are only resolved once one branch has more key
blocks than the others, resulting in a long time to prune if key block intervals are long.

Bitcoin’s mining power utilization drops quickly as frequency increases, tending towards 1/4,
the size of the largest miner. At the extreme, block generation is so fast that by the time a
miner learns of a block generated by another miner, that other miner has generated more blocks.
Then, only the largest miner generates main chain blocks, and the other miners catch up. This
also implies the deterioration of fairness, as forks are likely to be resolved by the largest miner
extending its preferred branch. As miners struggle to catch up with the leading pack, slow
miners mine on old blocks and the time to win metric increases.

Since contention in Bitcoin-NG is limited to key block generation, forks remain rare despite
high frequencies of microblocks. Increasing the microblock frequency achieves consensus delay
and time to prune reduction. All other metrics are unaffected and remain at the optimal level.

In the low frequency experiments of Bitcoin-NG, we observe a slight mining power utilization
decrease and time to prune increase. This is an artifact of the experimental setup. We run the
experiments over a set number of blocks, therefore these low contention experiments run for
an extended period, enough to observe key block forks. In these experiments, the key block
frequency of Bitcoin-NG is similar to the block frequency of Bitcoin. Indeed, in low contention
settings Bitcoin-NG provides only a minor advantage over Bitcoin since its key blocks are small
and propagate quickly.

8.2 Block Size

To study bandwidth scalability, we run experiments with different block sizes. We use high
frequencies to observe the systems’ limits, setting Bitcoin’s block frequency to 1/10sec and
Bitcoin-NG’s microblock frequency to 1/10sec and key block frequency to 1/100sec. Figure 8
shows the result.

As required, the transaction frequency increases with block size; the horizontal line shows
the operational Bitcoin rate.

Large blocks take longer to verify and propagate. Therefore, although block frequency is
constant, the time it takes for a miner to learn of a new block is longer, and so the chance for
forks increases.

These experiments demonstrate the expected tradeoff between bandwidth and latency. Con-
sensus latency increases due to forks, as it takes longer to choose the main chain. The time to
win also increases, as blocks take longer to catch up with the larger blocks, and so is time to
prune due to the many forks.

While this tradeoff may be acceptable, allowing for some hunt for a sweet spot on the
tradeoff curve, the real problem pertains to security. The forks cause significant mining power
loss, reaching about 80% at Bitcoin’s bandwidth (though at a higher block frequency), making
the system vulnerable to attackers that are much smaller.

Even more detrimental is the reduction in fairness. Even a minor degradation in fairness is
dangerous, since it provides incentives to miners to avoid losses by joining forces to enjoy the
advantage of mining in a larger pool. This leads to centralization of the mining power, obviating
Bitcoin’s security properties.

Bitcoin-NG demonstrates qualitative improvement, suffering no significant degradation in
the security-related metrics of fairness and mining power. At high bandwidth, however, the
clients are approaching their capacity, making it hard for them to keep up and we observe
degradation in consensus latency and time to prune.

9 Related Work

Model As in Bitcoin [37] and enhancements thereof [49, 45, 30], the goal of Bitcoin-NG is
to implement an RSM in an open system. The exact assumptions and guarantees are explored
in different works [10, 34, 22]. Our model is similar to those of Aspnes et al. [2] and Garay
et al. [22], and our definition of the Nakamoto Consensus is similar to that of [22]. These
are different from the model and goal of classical Byzantine fault tolerant RSMs. Those, by
and large, (1) assume static or slow to change membership, allowing for quorum systems and
reconfigurations thereof, and (2) do not guarantee fairness of representation of honest parties in
the state machine transitions.

The problem of leader election was apparently first formulated and solved in 1977 by Gerard
LeLann [29]. In 1982, Hector Garcia-Molina addressed the problem in a distributed system
that admits failures [23]. Since then leader election has been extensively used to improve the
performance of distributed systems (e.g., [18, 36]). In these classical consensus protocols, the
leader’s role is to propose decisions that have to be confirmed by a quorum. This can be
compared to having a block of a leader (as defined here) buried in blockchain protocols.

GHOST The GHOST protocol of Sompolinsky et al. [45] improves on Bitcoin’s scalability by
changing its chain selection rule. While in Bitcoin the chain with the most work (accumulated
over all chain blocks, based on their proof-of-work) is the main chain, with GHOST, at a fork, a
node chooses the side whose sub-tree contains more work (accumulated over all sub-tree blocks).
The benefit is that the heaviest sub-tree choice takes into account proof of work that does not end
up in the main chain. Thus, GHOST improves both fairness and the mining power utilization
under high contention.

However, in GHOST, blocks on pruned subtrees only affect the selection rule at the branch
point. The Bitcoin-NG protocol maintains a small fork rate at high bandwidth and throughput,
allowing for better mining power utilization and fairness. Moreover, to use GHOST in an
operational system, a challenge remains. In Bitcoin, at any given time, at least one node knows
what the main chain is since it knows all of its blocks. In GHOST this is not the case, and it
is possible that no single node has enough information to determine which is the main chain.
Appendix A provides an example.

One solution to finding the true main chain in GHOST is to propagate all blocks. However,
this exposes the system to denial of service attacks, as a malicious node can overwhelm the
network with low difficulty blocks. There may be heuristics to avoid the security danger; we
do not address this question, but did evaluate the system by implementing it, propagating
all blocks. Under these conditions, GHOST performed worse than Bitcoin as the overhead of
propagating all blocks outweighed the benefits of the chain selection rule. Future work may
find a solution to GHOST’s practical challenges, e.g. by propagating only block headers. Such
a practical implementation of GHOST can be used to complement Bitcoin-NG and allow for a
higher frequency of key blocks.

Inclusive Blockchains Lewenberg et al. [30] replace the blockchain structure with a di-
rected acyclic graph. There still is a main chain, but its blocks may refer to pruned branches to
include their transactions. Analysis demonstrates considerable improvement of fairness and min-
ing power utilization. Bitcoin-NG achieves optimal fairness and mining power utilization. Using
Bitcoin-NG with an inclusive blockchain to increase key block frequency may prove problematic:
Decommissioned leaders could retroactively introduce transactions and have them included by
the current leader. This could allow for DoS and double spending attacks.

Faster Bitcoin Significant effort by Bitcoin’s core developers is put into improving the
performance of the Bitcoin client and technical aspects of its protocol. While this work can

provide significant improvement and enable better scaling, it does not eliminate the inherent
limitation that stems from the forks forming at high rates.

Stathakopoulou et al. suggest to reduce propagation delay in the Bitcoin network [47]. How-
ever, their suggestions imply significant compromises on security. First, they have nodes prop-
agate transaction inventory before having the actual transactions; this allows an attacker to
swamp the network at no cost by publishing transaction IDs for non-existent transactions. Sec-
ond, they form a network by having nodes prefer connections with close neighbors — exactly
the opposite of the current security-oriented algorithm.

Improving the efficiency of the client [1, 39] can improve propagation time and reduce the
collision window (time before A hears B found a block). However the improvement is limited —
a processing speed increase of x% allows for block size increase of x% at the same fork rate.
Bitcoin-NG provides a qualitative improvement that removes the fork rate dependency on block
size or rate.

Corallo [15] has built a centralized fast relay for Bitcoin, parallel to the standard peer-to-
peer network. It significantly improves network throughput and latency but increases centralized
control and reduces fairness — miners outside the fast relay are at a disadvantage.

Off-chain solutions An alternative to improving the bandwidth and latency of the
blockchain is to perform transactions off the chain. This basic premise apparently originated in
Hearn and Spilman’s two-point channel protocol [24]. The Lightning network [42] and a protocol
by Decker and Wattenhofer [17] allow for extensive payment networks where transactions occur
without trusted middlemen. These solutions use contracts to allow any party to place fraud
proof on the main blockchain and deny revenue from a villain.

These solutions may be suitable in various scenarios, but they do not address the problem
of scaling a Nakamoto-consensus RSM. As an extreme example, in the benign case of failure of
the nodes performing transactions over a channel, all their transactions are lost, as they were
never stored in the blockchain.

Another proposition for improving bandwidth and latency is that of separate chains, known
as side chains. In side chains, transactions can move Bitcoin from one chain to another [3]. This
allows for sharding of the workload: A subset of the Bitcoins are moved to their own chain,
and can subsequently be managed at that chain. Each shard, running in its own chain, can use
Bitcoin-NG to enjoy its efficiency. This solution does not increase efficiency if sharding is not
possible and transactions frequently involve multiple chains.

Analysis Given a cryptopuzzle difficulty and a topology, Sompolinsky et al. [46] calculate
upper and lower bounds for the growth rate of the Bitcoin main chain. This analysis can be
translated to the expected forking frequency at different difficulty levels when there are exactly
two miners. Our experiments target a larger number of miners, modeled according to Bitcoin’s
operational system, that tune difficulty arbitrarily to reach a target main chain extension rate.

Miller and Jansen [33] describe a methodology for evaluating a large-scale Bitcoin blockchain
system on a single machine using an event-driven simulator. To facilitate manageable experiment
times, they replace time-consuming cryptographic operations with a delay of an appropriate
length. In our experiments, we run the original operational client directly on the operating
system, emulating only the network properties.

10 Conclusion

As Bitcoin and related cryptocurrencies have become surprisingly popular, they have hit scal-
ability limits. The technical debate to improve scalability has been hampered by a perceived
inherent tradeoff between performance metrics and security goals of the system. Consequently,

the discussions have become acrimonious, long-term solutions have seemed elusive, and the
current sentiment has centered around short-term, incremental, compromise solutions.

Bitcoin-NG shows that it is possible to improve the scalability of blockchain protocols to the
point where the network diameter limits consensus latency and the individual node processing
power is the throughput bottleneck. Such scaling is key in allowing for blockchain technology to
fulfill its promise of implementing trustless consensus for a variety of applications from payments,
through digital asset transactions, to smart contracts — at global scale.

Acknowledgements The authors thank Ayush Dubey, Gregory Maxwell, Malte Möser,
and Weijia Song for their comments on initial versions of this manuscript.

References

[1] Andresen, G. O(1) block propagation. https://gist.github.com/gavinandresen/

#file-blockpropagation-md, retrieved July. 2015.

[2] Aspnes, J. Randomized protocols for asynchronous consensus. Distributed Computing 16, 2-3
(2003), 165–175.

[3] Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timn, J., and Wuille, P. Enabling blockchain innovations with pegged sidechains.
http://cs.umd.edu/projects/coinscope/coinscope.pdf, 2014.

[4] Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., and Welten, S. Have a snack, pay
with Bitcoins. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference
on (2013), IEEE, pp. 1–5.

[5] Bellare, M., and Rogaway, P. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM conference on Computer and communications security
(1993), ACM, pp. 62–73.

[6] Bitcoin community. Bitcoin source. https://github.com/bitcoin/bitcoin, retrieved
Mar. 2015.

[7] Bitcoin community. Protocol rules. https://en.bitcoin.it/wiki/Protocol_rules, retrieved
Sep. 2013.

[8] Bitcoin community. Protocol specification. https://en.bitcoin.it/wiki/Protocol_

specification, retrieved Sep. 2013.

[9] BlockTrail. BlockTrail API. https://www.blocktrail.com/api/docs#api_data, retrieved
Sep. 2015.

[10] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten, E. W. Re-
search perspectives on Bitcoin and second-generation cryptocurrencies. In Symposium on Security
and Privacy (San Jose, CA, USA, 2015), IEEE.

[11] Buterin, V. Slasher: A punitive proof-of-stake algorithm. https://blog.ethereum.org/2014/

01/15/slasher-a-punitive-proof-of-stake-algorithm/, January 2015.

[12] CNNMoney Staff. The Ashley Madison hack...in 2 minutes. http://money.cnn.com/2015/08/

24/technology/ashley-madison-hack-in-2-minutes/, retrieved Sep. 2015.

[13] CoinDesk. Bitcoin venture capital. http://www.coindesk.com/bitcoin-venture-capital/, re-
trieved Sep. 2015.

[14] Colored Coins Project. Colored Coins. http://coloredcoins.org/, retrieved Sep. 2015.

[15] Corallo, M. High-speed Bitcoin relay network. http://sourceforge.net/p/bitcoin/mailman/
message/31604935/, November 2013.

[16] Decker, C., and Wattenhofer, R. Information propagation in the Bitcoin network. In IEEE
P2P (Trento, Italy, 2013).

https://gist.github.com/gavinandresen/#file-blockpropagation-md
https://gist.github.com/gavinandresen/#file-blockpropagation-md
http://cs.umd.edu/projects/coinscope/coinscope.pdf
https://github.com/bitcoin/bitcoin
https://en.bitcoin.it/wiki/Protocol_rules
https://en.bitcoin.it/wiki/Protocol_specification
https://en.bitcoin.it/wiki/Protocol_specification
https://www.blocktrail.com/api/docs#api_data
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
http://money.cnn.com/2015/08/24/technology/ashley-madison-hack-in-2-minutes/
http://money.cnn.com/2015/08/24/technology/ashley-madison-hack-in-2-minutes/
http://www.coindesk.com/bitcoin-venture-capital/
http://coloredcoins.org/
http://sourceforge.net/p/bitcoin/mailman/message/31604935/
http://sourceforge.net/p/bitcoin/mailman/message/31604935/

[17] Decker, C., and Wattenhofer, R. A fast and scalable payment network with Bitcoin Duplex
Micropayment Channels. In Stabilization, Safety, and Security of Distributed Systems - 17th Inter-
national Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings (2015),
Springer, pp. 3–18.

[18] Dwork, C., Lynch, N. A., and Stockmeyer, L. J. Consensus in the presence of partial
synchrony. J. ACM 35, 2 (1988), 288–323.

[19] Eyal, I., Birman, K., and van Renesse, R. Cache serializability: Reducing inconsistency in
edge transactions. In 35th IEEE International Conference on Distributed Computing Systems,
ICDCS 2015, Columbus, OH, USA, June 29 - July 2, 2015 (2015), pp. 686–695.

[20] Eyal, I., and Sirer, E. G. Bitcoin is broken. http://hackingdistributed.com/2013/11/04/

bitcoin-is-broken/, 2013.

[21] Eyal, I., and Sirer, E. G. Majority is not enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security (Barbados, 2014).

[22] Garay, J. A., Kiayias, A., and Leonardos, N. The Bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II (2015), pp. 281–310.

[23] Garcia-Molina, H. Elections in a distributed computing system. Computers, IEEE Transactions
on 100, 1 (1982), 48–59.

[24] Hearn, M., and Spilman, J. Rapidly-adjusted (micro)payments to a pre-determined party.
https://en.bitcoin.it/wiki/Contract, retrieved Sep. 2015.

[25] Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. Eclipse attacks on Bitcoin’s peer-
to-peer network. In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015. (2015), pp. 129–144.

[26] Kosba, A., Miller, A., Shi, E., Wen, Z., and Papamanthou, C. Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. Cryptology ePrint Archive, Report
2015/675, 2015. http://eprint.iacr.org/.

[27] Kroll, J. A., Davey, I. C., and Felten, E. W. The economics of Bitcoin mining or, Bitcoin
in the presence of adversaries. In Workshop on the Economics of Information Security (2013).

[28] Lamport, L. Using time instead of timeout for fault-tolerant distributed systems. ACM Trans-
actions on Programming Languages and Systems 6, 2 (Apr. 1984), 254–280.

[29] Le Lann, G. Distributed systems-towards a formal approach. In IFIP Congress (1977), vol. 7,
Toronto, pp. 155–160.

[30] Lewenberg, Y., Sompolinsky, Y., and Zohar, A. Inclusive block chain protocols. In Financial
Cryptography (Puerto Rico, 2015).

[31] Litecoin Project. Litecoin, open source P2P digital currency. https://litecoin.org, retrieved
Nov. 2014.

[32] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M.,
and Savage, S. A fistful of bitcoins: characterizing payments among men with no names. In
Proceedings of the 2013 Internet Measurement Conference, IMC 2013, Barcelona, Spain, October
23-25, 2013 (2013), pp. 127–140.

[33] Miller, A., and Jansen, R. Shadow-Bitcoin: Scalable simulation via direct execution of multi-
threaded applications. IACR Cryptology ePrint Archive 2015 (2015), 469.

[34] Miller, A., and Jr., L. J. J. Anonymous Byzantine consensus from moderately-hard puzzles:
A model for Bitcoin. https://socrates1024.s3.amazonaws.com/consensus.pdf, 2009.

[35] Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., and Bhat-
tacharjee, B. Preprint: Discovering Bitcoins public topology and influential nodes. http:

//cs.umd.edu/projects/coinscope/coinscope.pdf, 2015.

[36] Moraru, I., Andersen, D. G., and Kaminsky, M. Egalitarian Paxos. In ACM Symposium on
Operating Systems Principles (2012).

http://hackingdistributed.com/2013/11/04/bitcoin-is-broken/
http://hackingdistributed.com/2013/11/04/bitcoin-is-broken/
https://en.bitcoin.it/wiki/Contract
http://eprint.iacr.org/
https://litecoin.org
https://socrates1024.s3.amazonaws.com/consensus.pdf
http://cs.umd.edu/projects/coinscope/coinscope.pdf
http://cs.umd.edu/projects/coinscope/coinscope.pdf

[37] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/

bitcoin.pdf, 2008.

[38] Nayak, K., Kumar, S., Miller, A., and Shi, E. Stubborn mining: Generalizing selfish mining
and combining with an eclipse attack. IACR Cryptology ePrint Archive 2015 (2015), 796.

[39] Pazmiño, J. E., and da Silva Rodrigues, C. K. Simply dividing a Bitcoin network node may
reduce transaction verification time. The SIJ Transactions on Computer Networks and Communi-
cation Engineering (CNCE) 3, 2 (February 2015), 17–21.

[40] Pease, M. C., Shostak, R. E., and Lamport, L. Reaching agreement in the presence of faults.
J. ACM 27, 2 (1980), 228–234.

[41] Peck, M. E. Adam Back says the Bitcoin fork is a coup. http://spectrum.ieee.org/tech-talk/
computing/networks/the-bitcoin-for-is-a-coup, Aug 2015.

[42] Poon, J., and Dryja, T. The Bitcoin Lightning Network. http://lightning.network/

lightning-network.pdf, February 2015. Draft 0.5.

[43] Sapirshtein, A., Sompolinsky, Y., and Zohar, A. Optimal selfish mining strategies in Bitcoin.
CoRR abs/1507.06183 (2015).

[44] Schneider, F. B. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys 22, 4 (Dec. 1990), 299–319.

[45] Sompolinsky, Y., and Zohar, A. Accelerating Bitcoin’s transaction processing. fast money
grows on trees, not chains. In Financial Cryptography (Puerto Rico, 2015).

[46] Sompolinsky, Y., and Zohar, A. Secure high-rate transaction processing in Bitcoin. In Financial
Cryptography and Data Security - 19th International Conference, FC 2015, San Juan, Puerto Rico,
January 26-30, 2015, Revised Selected Papers (2015), pp. 507–527.

[47] Stathakopoulou, C. A faster Bitcoin network. Tech. rep., ETH, Zürich, January 2015. Semester
Thesis, supervised by C. Decker and R. Wattenhofer.

[48] Swanson, E. Bitcoin mining calculator. http://www.alloscomp.com/bitcoin/calculator, re-
trieved Sep. 2013.

[49] The Ethereum community. Ethereum white paper. https://github.com/ethereum/wiki/wiki/
White-Paper, retrieved July. 2015.

[50] Wikipedia. List of cryptocurrencies. https://en.wikipedia.org/wiki/List_of_

cryptocurrencies, retrieved Oct. 2013.

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup
http://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup
http://lightning.network/lightning-network.pdf
http://lightning.network/lightning-network.pdf
http://www.alloscomp.com/bitcoin/calculator
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://en.wikipedia.org/wiki/List_of_cryptocurrencies
https://en.wikipedia.org/wiki/List_of_cryptocurrencies

A GHOST Propagation Example

Figure 9 illustrates an example of when no single GHOST protocol [45] node is aware of the
main chain in the system. Consider three nodes, 1, 2, and 3, each of which is aware of only a
subset of the blocks. Each node knows a chain with a length of height 4, and each knows of a
branch of height 3 starting at a block 2′ and ending at either block 3′, 3′′, or 3′′′, as shown in
Figures 9a, 9b, and 9c, respectively.

3

1

2

0

3’’

3’

3’’’

4

2’

(a) View of node 1

3

1

2

0

3’’

3’

3’’’

4

2’

(b) View of node 2

3

1

2

0

3’’

3’

3’’’

4

2’

(c) View of node 3

Figure 9: A partial view of the GHOST block tree by node 1 (a), node 2 (b), and node 3 (c) does
not allow either of them to surmise which is the main chain.

B Competition on a Key-Block Fork

We note that in case of a fork where two miners discover competing key blocks following the same
key block (and after any number of subsequent microblocks) things become more complicated
than they are in Bitcoin. Here, each leader can publish transactions that pay a large fee to
the subsequent miner in order to entice miners to choose his branch. While this competition
may introduce interesting dynamics beyond the scope of this work, we note that each branch
may copy the transactions placed in the microblocks of the competing branch, and so even if
an attacker is motivated to place significant fees due to external incentives, its competitor will
copy those same transactions and remove the attacker’s advantage.

	1 Introduction
	2 Model and Goal
	3 Bitcoin and its Blockchain Protocol
	4 Bitcoin-NG
	4.1 Key Blocks and Leader Election
	4.2 Microblocks
	4.3 Confirmation Time
	4.4 Remuneration
	4.5 Microblock Fork Prevention

	5 Security Analysis
	5.1 Incentives
	5.2 Other concerns

	6 Metrics
	7 Experimental Setup
	8 Evaluation
	8.1 Block Frequency
	8.2 Block Size

	9 Related Work
	10 Conclusion
	A GHOST Propagation Example
	B Competition on a Key-Block Fork

