
Idea: Benchmarking Indistinguishability
Obfuscation – A candidate implementation

Sebastian Banescu, Mart́ın Ochoa, Nils Kunze, and Alexander Pretschner

Technische Universität München, Germany
{banescu, ochoa, nils.kunze, pretschn}@cs.tum.edu

Abstract. We present the results of preliminary experiments imple-
menting the Candidate Indistinguishability Obfuscation algorithm re-
cently proposed by Garg et al. [1]. We show how different parameters of
the input circuits impact the performance and the size of the obfuscated
programs. On the negative side, our benchmarks show that for the time
being the algorithm is far away from being practical. On the positive
side, there is still much room for improvement in our implementation.
We discuss bottlenecks encountered and optimization possibilities. In
order to foster further improvements by the community, we make our
implementation public.

1 Introduction

Obfuscation of software, intended as a transformation of a program such that it
is difficult for adversaries to understand details of its logic or internal variables, is
of an increasing practical relevance [2]. Typically obfuscation is associated with
‘security by obscurity’, because of a lack of formal guarantees on the security of
commonly used obfuscation operators [3]. On the theoretical side, it has been
shown by Barak et al. [4] that it is impossible to construct an obfuscator such
that from the obfuscated version of a program implementing a function f , an
adversary can only learn the inputs and outputs to f exclusively.

Recently, Garg et al. [1] proposed a promising approach that offers formal
security guarantees for indistinguishability obfuscation, a particular obfuscation
notion that guarantees that the obfuscations of two programs implementing the
same functionality are indistinguishable. As a basis for their proof, the authors
show that a successful attack to their construction is also an solution to the
multilinear jigsaw problem, which is believed to be computationally hard. The
authors conjecture that this construction provides the expected security for the
obfuscation of most programs.

Although the proposers of indistinguishability obfuscation acknowledge that
their construction is not practical as of today [5], concrete details have so far not
been published. The motivation of our work is thus to better understand how far
is the candidate construction from real applications. To do so, we prototypically
implemented the algorithm described in [1] and benchmarked its space and time
performance depending on various parameters.

2 Sebastian Banescu, Mart́ın Ochoa, Nils Kunze, and Alexander Pretschner

Our contributions can be summarized as follows: a) to our knowledge, we
provide the first open source implementation of the candidate indistinguishabil-
ity obfuscation candidate [1], so that the community can gradually improve on
it, b) we provide reproduceable performance benchmarks, which give an upper
bound on the necessary time and space for running/storing obfuscated programs
and c) we discuss potential areas for improvement based on our experiments.

The paper is organized as follows: In Section 2 we give an overview of the
candidate construction. We then present an overview of our implementation in
Section 3 and our benchmarking results in Section 4. We conclude by summariz-
ing our results and giving an overview of ongoing and future work in Section 5.

2 Preliminaries

This section presents the candidate indistinguishability obfuscation construction
developed by Garg et al. [1] applied to boolean circuits in NC1 [6], preceded by
the concepts needed to understand this construction.

A boolean circuit is a directed acyclic graph, where nodes are represented by
conjunction, disjunction and/or negation gates with maximum 2 inputs (fan-in-
2), which process only boolean values. The size of a circuit is equal to the total
number of gates in that circuit. The depth of a circuit is the length of the longest
path from input to output gate, in the circuit.

A uniform probabilistic polynomial-time Turing (PPT) machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if: (1) it preserves the
input-output behavior of the unobfuscated circuit and (2) given two circuits
C1, C2 ∈ Cλ and their obfuscated counterparts iO(λ,C1), iO(λ,C2), a PPT ad-
versary will not be able to distinguish which obfuscated circuit originates from
which original circuit with significant probability (the advantage of the adversary
is bounded by a negligible function of the security parameter λ).

Even though an iO applies to boolean circuits, internally it transforms all
circuits into linear branching programs on which it operates. This transformation
is made possible by Barrington’s theorem [7], which states that any fan-in-2,
depth-d boolean circuit can be transformed into an oblivious linear branching
program of length at most 4d, that computes the same function as the circuit.

Definition 1. (Oblivious Linear Branching Program [1]) Let A0, A1 ∈ {0, 1}5×5

be two distinct arbitrarily chosen permutation matrices. An (A0, A1) oblivious
branching program of length n for circuits with `-bit inputs is represented by a
sequence of instructions BP = ((inp(i), Ai,0, Ai,1))ni=1, where Ai,b ∈ {0, 1}5×5,
and inp : {1, n} → {1, `} is a mapping from branching program instruction index
to circuit input bit index. The function computed by the branching program is

fBP,A0,A1(x) =

0 if Πn

i=1Ai,xinp(i) = A0
1 if Πn

i=1Ai,xinp(i) = A1
undef otherwise

Idea: Benchmarking indistinguishability obfuscation 3

The family of circuits Cλ is characterized by ` inputs, λ gates, O(logλ) depth
and one output. Cλ has a corresponding polynomial-sized universal circuit, which
is a function Uλ : {0, 1}f(λ) × {0, 1}` → {0, 1}, where f(λ) is some function of
λ. Uλ can encode all circuits in Cλ, i.e. ∀C ∈ Cλ,∀z ∈ {0, 1}`,∃Cb ∈ {0, 1}f(λ) :
Uλ(Cb, z) = C(z). It is important to note that the input of Uλ is a f(λ) + ` bit
string and that by fixing any f(λ) bits, one obtains a circuit in Cλ.

Universal circuits are part of the candidate iO construction, because they
enable running Kilian’s protocol [8], which allows two parties (V and E), to
evaluate any NC1 circuit (e.g. Uλ) on their joint input X = (x|y), without dis-
closing their inputs to each other, where x, y are the inputs of V , respectively
E. This is achieved by transforming the circuit into a branching program BP =
((inp(i), Ai,0, Ai,1))ni=1 by applying Barrington’s theorem [7]. Subsequently V
chooses n random invertible matrices {Ri}ni=1 over Zp, computes their inverses
and creates a new randomized branching program RBP = ((inp(i), Ãi,0, Ãi,1))ni=1,
where Ãi,b = Ri−1Ai,bR

−1
i for all i ∈ {1, n}, b ∈ {0, 1} and R0 = Rn. It can

be shown that RBP and BP compute the same function. Subsequently, V
sends E only the matrices corresponding to her part of the input {Ãi,b : i ∈
{1, n}, inp(i) < |x|} and E only gets the matrices corresponding to one specific
input via oblivious transfer. E can now compute the result of RBP without
finding out V ’s input. Kilian’s protocol is related to the notion of program ob-
fuscation, if we think of V as a software vendor who wants to hide (obfuscate)
a program that is going to be distributed to end-users (E). However, Kilian’s
protocol [8] is modified in [1], by sending all matrices corresponding to any input
of E, which allows E to run the RBP with more that one input. This modified
version is vulnerable to partial evaluation attacks, mixed input attacks and also
non-multilinear attacks, which extract information about the secret input of V .

To prevent partial evaluation attacks Garg et al. [1] transform the 5 × 5
matrices of BP into higher order matrices, having dimension 2m + 5, where
m = 2n+5 and n is the length of BP . Subsequently, they add 2 bookend vectors
of size 2m+ 5 in order to neutralize the multiplication with the random entries
in the higher order matrices. To prevent mixed input attacks a multiplicative
bundling technique is used, which leads to an encoded output of BP . To decode
the output of the BP an additional branching program of equal length with BP ,
that computes the constant 1 function is generated and the same multiplicative
bundling technique is applied to it. Subtracting the results of the two branching
programs executed on the same inputs, will decode the output of BP . To prevent
non-multilinear attacks, the candidate construction of Garg et al. [1] employs the
multilinear jigsaw puzzle (MJP).

An overview of MJP is illustrated in Figure 1 and consists of two entities, i.e.
the Jigsaw Generator (JGen) and the Jigsaw Verifier (JVer). The JGen is part
of the circuit obfuscator. It takes as input a security parameter (λ), a universal
circuit (Uλ) and the number of input bits (`) of any circuit simulated by Uλ. JGen
first applies Barrington’s theorem [7] to transform Uλ into a universal branching
program UBP of length n. Subsequently, the Instance Generator takes λ and the
multilinearity parameter (k = n+2) as inputs and outputs a prime number p and

4 Sebastian Banescu, Mart́ın Ochoa, Nils Kunze, and Alexander Pretschner

Fig. 1. Overview of the candidate construction for indistinguishability obfuscation

a set of public system parameters (including a large random prime q and a small
random polynomial g ∈ Z[X]/(Xm + 1)). Afterwards, UBP is transformed into
a randomized branching program by: (1) transforming the branching program
matrices into higher order matrices, (2) applying multiplicative bundling and (3)
the first step of Kilian’s protocol. The output of JGen is a set of public system
parameters and the randomized universal branching program (R̂ND(UBPλ))
with all matrices encoded by the Encoder component.

The output of JGen can be used to obfuscate a circuit C ∈ Cλ by fixing
a part of the inputs (garbling) of R̂ND(UBPλ) such that it encodes C for all
z ∈ {0, 1}`. Garbling is done by discarding the matrices of R̂ND(UBPλ) which
correspond to values not chosen for the fixed input bits. The result of this step is
iO(λ,C), the candidate of Garg et al. [1]. It is sent to an untrusted party which
evaluates it by fixing the rest of its inputs and providing it as input to the JVer.
The JVer outputs 1 if the evaluation of iO(λ,C) is successful and 0, otherwise.

3 Implementation

Our proof-of-concept implementation was done in Python, leveraging the SAGE
computer algebra system and can be downloaded from the Internet1. It consists
of the following modules, corresponding to the light blue rectangles from Fig-
ure 1: (1) building blocks for universal circuit creation, (2) Barrington’s theorem
for transforming boolean circuits to branching programs, (3) transformation from
branching program matrices into higher order matrices and applying multiplica-
tive bundling (4) 1st step of Kilian’s protocol for creating randomized branching
1 https://github.com/tum-i22/indistinguishability-obfuscation

https://github.com/tum-i22/indistinguishability-obfuscation

Idea: Benchmarking indistinguishability obfuscation 5

Fig. 2. Generation of UCs (X-axis: no. inputs (`), no. gates of input circuit (λ))

programs from branching programs, (5) instance generator for MJP, (6) encoder
for MJP, (7) circuit encoder into input for universal circuit, (8) partial input
fixer for random branching programs, and (9) zero testing of jigsaw verifier.
Technical challenges faced Although commonly used in the literature, we could
not find a readily available implementation of Universal Circuits (UC) that was
easily adaptable to our setting. Therefore we decided to implement our own
UC component, following the less performant algorithm of [9]. For the sake of
performance, this component can be improved by following for instance the more
performant (but more complex) algorithm suggested in [9] or [10].
Challenges interpreting [1] We also faced some challenges while interpreting
the candidate construction description, in particular their suggested encoding
function. For instance it was difficult to come up with concrete values for some
parameters, since the relation between them is given using the big O notation.
On the other hand, the Encoder function requires to reduce an element a ∈ Zp
modulo a polynomial g of degree ≥ 1. We could not think of a better canoni-
cal representative for this reduction than a itself, which makes us believe that
either the modulo reduction is redundant or the authors had another canonical
representative in mind (a polynomial) which is unclear how to compute.
Summary of current status Currently, our implementation can perform most
steps of the candidate construction, with the exception of the zero test. We
believe this is a result of an incorrect choice of the canonical representative of a
modulo g or/and of the concrete parameters as discussed above. We have raised
these issues in popular mathematics and cryptography forums and contacted
the authors for clarification with no success at the moment of elaborating this
document. However, note from Figure 1 that the improper functioning of the zero
test does not affect the results of benchmarking the Circuit Obfuscator presented
in the next section, because the it is part of the Jigsaw Verifier.

4 Benchmarking

We executed our experiments on a virtual machine (VM) with 4 cores and 64
GB of memory. The first experiment aims to investigate the resources required

6 Sebastian Banescu, Mart́ın Ochoa, Nils Kunze, and Alexander Pretschner

Fig. 3. Generation of BPs (X-axis: no. inputs (`), no. gates of input circuit (λ))

to obfuscate a circuit consisting only of AND gates as a function of its number of
inputs and gates. As illustrated in Figure 1 the first step of obfuscation consists
of generating the UC, corresponding to the first step of our experiment. The
number of circuit inputs were varied between 2 and 4, while the number of gates
between 1 and 10. The recorded outputs are shown in Figure 2 and consist of the:
number of gates, memory usage, output file and generation time needed for the
UC. Observe that increasing the number of inputs causes a linear increase in each
measured output of the experiment, while increasing the number of gates causes
an exponential increase. The memory usage is around one order of magnitude
higher than the file size due to the compression algorithm we use to store UCs.

The second step of our experiment consisted of transforming the previously
generated UCs into branching programs (BPs) using our implementation of Bar-
rington’s theorem [7]. However, it was infeasible to transform all the previously
generated UCs because of the fast polynomial increase in memory usage and file
size, illustrated in Figure 3. We estimated the size of generating a BP for a UC
which encodes a circuit by applying following recursive formula (corresponding
to our implementation), to the output gate of a UC:

l(gate) =

1 if type(gate) = Input
l(gate.input) if type(gate) = NOT
2l(gate.input1) + 2l(gate.input2) if type(gate) = AND

The estimated memory usage of a universal BP which encodes 4 inputs and 6
gates, corresponding to the largest UC we show in Figure 2, is over 4.47 Peta
Bytes, which is infeasible to generate on our VM.

The third step of our experiment was to transform the BPs generated pre-
viously into randomized branching programs (RBPs) by transforming the BP
matrices into higher order matrices, applying multiplicative bundling and the
first step of Kilian’s protocol [8]. The results of this experiment are shown in
Figure 4. Additionally to the number of inputs and gates, in this experiment
we also have the matrix dimension increase (m) and the choice of the prime (p)
corresponding to Zp in which Kilian’s protocol operates. The choice of m influ-
ences both the generation time and the file size polynomially. Observe that the
memory usage remains constant for different values of m. This is due to com-
patibility issues between SAGE and our memory profiler. However, we observer

Idea: Benchmarking indistinguishability obfuscation 7

Fig. 4. Generation of RBPs (X-axis: no. inputs (`), no. gates of input circuit (λ), matrix
dimension (m), prime number (p)). Legend is the same as Figure 3.

that the actual memory usage is still one order of magnitude higher than the file
size. p influences the generation time linearly, however, the memory usage and
file size are affected only if the data type width of p grows. Note that, the mem-
ory usage is not shown in Figure 4 since it could not be measured reliably due
to technical limitations of our memory profiler. We estimate that the memory
usage is approximately one order of magnitude higher than the file size.

5 Conclusions and Future Work

In this paper we have presented a non-trivial upper bound on the size and
performance of the obfuscated versions of small circuits. To give an idea about
the practicality of this construction, consider a 2-bit multiplication circuit. It
requires 4 inputs and between 1 and 8 AND gates for each of its 4 output bits.
An obfuscation would be generated in about 1027 years on a 2,6 GHz CPU and
would require 20 Zetta Bytes of memory for m = 1 and p = 1049. Executing
this circuit on the same CPU would take 1.3× 108 years. This clearly indicates
that for the time being the candidate construction is highly unpractical.

However, this upper bound can still be tightened (perhaps even dramati-
cally) by improving upon our preliminary implementation. In particular, there
exist better algorithms for the generation of universal circuits, which directly
affect the size of the obfuscation [9, 10]. There is an inherent limitation for this
improvement due to the fact that the output of gates in UCs are reused by
other gates, which causes duplication of matrices in BPs when using Barring-
ton’s theorem [7]. Therefore, one improvement is to avoid using Barrington’s
theorem as suggested by Ananth et al. [11]. On the other hand, we have only
implemented the construction for NC1 circuits: the candidate construction in-

8 Sebastian Banescu, Mart́ın Ochoa, Nils Kunze, and Alexander Pretschner

cludes an extension to cope with bigger circuit classes, that includes the use of
fully homomorphic encryption. To this date, there exists no practical implemen-
tations of fully homomorphic encryption, although progress has been made since
the original algorithm was proposed [12].

As research advances towards practical fully homomorphic encryption, we
expect our initial and open implementation of the candidate indistinguishability
obfuscation algorithm to foster improvements by the community. Being open,
our implementation is amenable to adaptations to new algorithms based on the
MJP complexity assumption.

At the moment of submission of this manuscript, we are working to make our
implementation fully functional. Avenues for future work include: (1) improving
the UC generation procedure according to [9, 10], (2) engineering more efficient
representations for the matrices and polynomials in memory and disk, (3) im-
proving our optimization technique to reduce obfuscated circuit generation time,
(4) experimenting with various compression techniques and (5) implementing the
technique of Ananth et al. [11], to avoid Barrington’s theorem.

References
1. S. Garg, C. Gentry, S. Halevi, M. Raykova, A Sahai, and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits. In Proc.
of the 54th Annual Symp. on Foundations of Computer Science, pages 40–49, 2013.

2. W. Zhou, Z. Wang, Y. Zhou, and X. Jiang. Divilar: Diversifying intermediate
language for anti-repackaging on android platform. In Proc. of the 4th ACM Conf.
on Data and Application Security and Privacy, pages 199–210. ACM, 2014.

3. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transfor-
mations. Technical report, Department of Computer Science, The University of
Auckland, New Zealand, 1997.

4. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im) possibility of obfuscating programs. In CRYPTO 2001,
pages 1–18. Springer, 2001.

5. C. Edwards. Researchers probe security through obscurity. Communications of
the ACM, 57(8):11–13, 2014.

6. S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

7. D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In Proc. of the 18th Annual ACM Symp. on Theory
of Computing, STOC ’86, pages 1–5, New York, NY, USA, 1986. ACM.

8. J. Kilian. Founding crytpography on oblivious transfer. In Proc. of the 20th Annual
ACM Symp. on Theory of Computing, pages 20–31. ACM, 1988.

9. T. Schneider. Practical secure function evaluation. Master’s thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2008.

10. L. G. Valiant. Universal circuits (preliminary report). In Proc. of the 8th Annual
ACM Symp. on Theory of Computing, pages 196–203. ACM, 1976.

11. P. Ananth, D. Gupta, Y. Ishai, and A. Sahai. Optimizing obfuscation: Avoiding
barrington’s theorem. IACR Cryptology ePrint Archive, 2014:222, 2014.

12. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proc. of the 3rd ACM Workshop on Cloud Computing Security, pages
113–124. ACM, 2011.

	Idea: Benchmarking Indistinguishability Obfuscation – A candidate implementation
	Introduction
	Preliminaries
	Circuit and Branching Programs
	Universal Circuits (UCs)
	Multilinear Jigsaw Puzzle (MJP)

	Implementation
	Benchmarking
	Conclusions and Future Work

