SNARK:S for C:
Verifying Program Executions Succinctly and in Zero Knowledge

(extended version)

Eli Ben-Sasson!, Alessandro ChiesaZ, Daniel GenkinZ, Eran Tromer® and Madars Virza?2

! Technion, {e1i,danielg3}@cs.technion.ac.il
2 MIT, {alexch,madars}@csail.mit.edu
3 Tel Aviv University, tromer@cs.tau.ac.il

October 7, 2013

Abstract

An argument system for NP is a proof system that allows efficient verification of NP statements,
given proofs produced by an untrusted yet computationally-bounded prover. Such a system is non-
interactive and publicly-verifiable if, after a trusted party publishes a proving key and a verification key,
anyone can use the proving key to generate non-interactive proofs for adaptively-chosen NP statements,
and proofs can be verified by anyone by using the verification key.

We present an implementation of a publicly-verifiable non-interactive argument system for NP. The
system, moreover, is a zero-knowledge proof-of-knowledge. It directly proves correct executions of
programs on TinyRAM, a random-access machine tailored for efficient verification of nondeterministic
computations. Given a program P and time bound 7', the system allows for proving correct execution
of P, on any input z, for up to T steps, after a one-time setup requiring O(|P| - T') cryptographic
operations. An honest prover requires O(\P | - T') cryptographic operations to generate such a proof,
while proof verification can be performed with only O(|z|) cryptographic operations. This system can
be used to prove the correct execution of C programs, using our TinyRAM port of the GCC compiler.

This yields a zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK) for
program executions in the preprocessing model — a powerful solution for delegating NP computations,
with several features not achieved by previously-implemented primitives.

Our approach builds on recent theoretical progress in the area. We present efficiency improvements
and implementations of two main ingredients:

1. Given a C program, we produce a circuit whose satisfiability encodes the correctness of execution of
the program. Leveraging nondeterminism, the generated circuit’s size is merely quasilinear in the size
of the computation. In particular, we efficiently handle arbitrary and data-dependent loops, control
flow, and memory accesses. This is in contrast with existing “circuit generators”, which in the general
case produce circuits of quadratic size.

2. Given a linear PCP for verifying satisfiability of circuits, we produce a corresponding SNARK. We
construct such a linear PCP (which, moreover, is zero-knowledge and very efficient) by building on
and improving on recent work on quadratic arithmetic programs.

Keywords: computationally-sound proofs, succinct arguments, zero-knowledge, delegation of computation



Contents

1

Introduction

1.1  Succinct Verification in the Preprocessing Model . . . . . . .
1.2 Approach Motivation . . . . . ... ... ... ........
1.3 Contributions . . . . . . . . . . ... . e

14 Roadmap . ... ... ... ... ... .. .. ...
2 From Correctness of Program Execution to Circuit Satisfiability
2.1 The TinyRAM Architecture . . . . . . ... ... ... ....
2.2 A Compiler fromCto TinyRAM . . . .. ... ... .....
2.3 An Efficient Reduction from TinyRAM to Circuit Satisfiability
3 Verifying Circuit Satisfiability via Linear PCPs
3.1 A Transformation from Any Linear PCP . . . . . .. ... ..
3.2 An Efficient Linear PCP . . . . . .. ... ... .. .....
33 Performance . . . ... ... ... ... ... .
4 System Evaluation
4.1 System Overview . . . . . . . . .. ... e
4.2 System Performance . . ... ... .. ............
4.3  Performance for Rectilinear TSP Example . . . . . . ... ..
4.4  Further Optimizations . . . . . . . . .. ... ... ......
5 Extensions
Acknowledgments
A Definition of Zero-Knowledge SNARKSs
B Summary of Theoretical Work on Succinct Verification
C Prior Implementation Work
C.1 Prior Implementations of Proof Systems for Verifiably Delegating Computation . . . . . . .
C.2 Prior Implementations of Circuit Generators . . . . . ... ..
D Definition of Linear PCPs
E An Efficient HVZK Linear PCP
E.1 The Construction . . . . ... ... .. .. ..........
E.2 Computational Complexity of the Construction . . . . .. ..
F Examples Used in Section 2.2
References

21
21
24
25

28
28
29
31
32

33

34

35

37

38
38
39

40

42
43
45

48

49



1 Introduction

Proof systems for NP let an untrusted prover convince a verifier that “x € L” where L is some fixed
NP-complete language. Proof systems for NP that satisfy the zero knowledge and proof of knowledge prop-
erties are a powerful tool that enables a party to prove that he or she “knows” a secret satisfying certain
properties, without revealing anything about the secret itself. Such proofs are important building blocks of
many cryptographic tools, including secure multiparty computation [GMWS87, BGWS88], group signatures
[BWO06, Gro06], malleable proof systems [CKLM12], anonymous credentials [BCKLO08], delegatable cre-
dentials [BCC™09], electronic voting [KMOO1, Gro05, Lip11], and many others. Known constructions of
zero-knowledge proofs of knowledge are practical only when proving statements of certain form, which
avoid generic NP reductions (e.g., proving pairing-product equations [Gro06]). Obtaining implementations
that are both generic and efficient in practice is a long-standing goal in cryptography [BBK™09, ABB™12].

Due to differences in computational power among parties, many applications also require succinct ver-
ification: the verifier is able to check a nondeterministic polynomial-time computation in time that is much
shorter than the time required to run the computation when given a valid NP witness. For instance, this is
the case when a weak client wishes to outsource (or delegate) a computation to an untrusted worker. The
additional requirement of succinct verification has still not been achieved in practice in its full generality,
despite recent theoretical and practical progress.

Furthermore, a difficulty that arises when studying the efficiency of proofs for arbitrary NP statements
is the problem of representation. Proof systems are typically designed for inconvenient NP-complete lan-
guages such as circuit satisfiability or algebraic constraint satisfaction problems, while in practice, many of
the problem statements we are interested in proving are easiest (and more efficient) to express via algorithms
written in a high-level programming language. Modern compilers can efficiently transform these algorithms
into a program to be executed on a random-access machine (RAM) [CR72, AV77]. Therefore, we seek proof
systems that efficiently support NP statements expressed as the correct execution of a RAM program.

1.1 Succinct Verification in the Preprocessing Model

There has been a lot of work on the problem of how to enable a verifier to succinctly verify long computa-
tions. Depending on the model, the functionality, and the security notion, different constructions are known.
See Appendix B for a brief summary of prior theoretical work in this area.

Many constructions achieving some form of succinct verification are only computationally sound: their
security is based on cryptographic assumptions, and therefore are secure only against bounded-size provers.
Computational soundness seems inherent in many of these cases [BHZ87, GH98, GVWO02, Wee05]. Proofs
(whether interactive or not) that are only computationally sound are also known as arguments [BCC88].

In this work we seek non-interactive succinct verification. We make two concessions: soundness is
computational, and the proofs are in the preprocessing model which relies on an expensive but reusable key
generation (discussed below). Thus, we investigate efficient implementations of succinct non-interactive
arguments (SNARGs) in the preprocessing model. We focus on the publicly-verifiable case, where a non-
interactive proof can be (succinctly) verified by anyone.

For simplicity, we start by introducing this cryptographic primitive for circuit satisfiability: the circuit
satisfaction problem of a circuit C': {0,1}" x {0,1}" — {0,1} is the relation R¢ = {(z,a) € {0,1}" x
{0,1}" : C(x,a) = 0}; its language is Lo = {x € {0,1}" : Ja € {0,1}", C(x,a) = 0}.

A publicly-verifiable preprocessing SNARG (or, for brevity in this paper, simply SNARG) is a triple
of algorithms (G, P, V'), respectively called key generator, prover, and verifier, working as follows. The
(probabilistic) key generator G, given a security parameter A and circuit C': {0,1}" x {0,1}* — {0, 1},



outputs a proving key o and a verification key T; these are the system’s public parameters, which need to be
generated only once per circuit. After that, anyone can use the proving key o to generate non-interactive
proofs for the language £, and anyone can use the verification key 7 to check these proofs. Namely, given
o and any (x,a) € R, the honest prover P(o, x, a) produces a proof 7 attesting that x € L¢; the verifier
V (7, x, ) checks that 7 is a valid proof for z € L.

The efficiency requirements are as follows:

running the generator G on input (1*, C') requires poly(|C|) cryptographic operations;

running the prover P on input (o, z, a) also requires poly(|C|) cryptographic operations; but

running the verifier V on input (7, z, ) only requires poly(|z|) cryptographic operations; and

an honestly-generated proof has size poly()\).

We require (adaptive) computational soundness: for every polynomial-size prover P*, constant ¢ > 0,
large enough security parameter A\ € N, and circuit C': {0,1}" x {0,1}* — {0,1} of size \°, letting
(o0,7) < G(1*,C), if P*(o,7) outputs an adaptively-chosen (x,7) such that there is no a for which
(z,a) € Re then V (7, x, ) rejects (except with negligible probability over G’s randomness).

If a SNARG satisfies a certain natural proof-of-knowledge property, we call it a SNARG of knowledge
(SNARK). If it also satisfies a certain natural zero-knowledge property, we call it a zero-knowledge SNARK
(zk-SNARK). See Appendix A for definitions, and Figures 14 to 15 on page 35 for diagrams.

1.2 Approach Motivation

It would be wonderful to have efficient and generic implementations of SNARGs without any expensive
preprocessing. (L.e., have the generator GG run in poly(\) instead of poly(|C|) cryptographic operations).
The two known approaches to constructing such SNARGs are Micali’s “computationally-sound proofs”
[Mic00], and the bootstrapping techniques of Bitansky et al. [BCCT13]. Algorithmically, both are complex
constructions: the former requires probabilistically-checkable proofs (PCPs) [BFLS91] (which remain con-
cretely expensive despite recent advances [BGH ™05, BS08, Din07, MR08, BCGT13b]), and the latter uses
recursive proof-composition which adds a (quasilinear yet) concretely large overhead.*

Thus, it seems wise to first investigate efficient implementations of SNARGs in the preprocessing model,
which is a less demanding model because it allows GG to conduct a one-time expensive computation “as a
setup phase”. Despite the expensive preprocessing, this model is potentially useful for many applications:
while the generator GG does require a lot of work to set up the system’s public parameters (which only depend
on the given circuit C' but not the input to C), this work can be subsequently amortized over many succinct
proof verifications (where each proof is with respect to a new, adaptively-chosen, input to C').

In this work we focus on the preprocessing model, due to the simpler and tighter constructions known
in it. Recent works [Gro10a, Lip12, GGPR13, BCI"13] constructed zk-SNARKs based on knowledge-of-
exponent assumptions [Dam92, HT98, BP04] in bilinear groups, and all of these constructions achieved the
attractive feature of having proofs consisting of only O(1) group elements and of having verification via
simple arithmetic circuits that are linear in the size of the input for the circuit.

In this vein, Bitansky et al. [BCI™ 13] gave a general technique for constructing zk-SNARKs. First, they
define a linear PCP to be one where the honest proof oracle is a linear function (over an underlying field),
and soundness is required to hold only for linear proof oracles. Then, they show a transformation (also based

*Moreover, giving up public verifiability does not seem to allow for significantly simpler constructions. Concretely, known
constructions of privately-verifiable SNARGs (without preprocessing) [BCCT12, DFH12, GLR11, BC12] rely, not only on PCPs,
but also on private-information retrieval or fully-homomorphic encryption, both of which are expensive in practice.



on knowledge-of-exponent assumptions) from any linear PCP with a low-degree verifier to a SNARK; also,
if the linear PCP is honest-verifier zero-knowledge (HVZK), then the resulting SNARK is zero knowledge.
Efficient HVZK linear PCPs for circuit satisfiability, with low-degree verifiers, are implied by the
work of Gennaro et al. [GGPR13] on quadratic-span programs (QSPs) and quadratic arithmetic programs
(QAPs). Moreover, the work of Ben-Sasson et al. [BCGT13a] implies that random-access machine com-
putations can be efficiently reduced to circuit satisfiability. Combining these ingredients, one obtains a the-
oretically simple and attractive route for constructing zk-SNARKSs. As always, bringing theory to practice
requires significant additional insights and improvements, and tackling these is the goal of our work.

1.3 Contributions

In this work we present an implementation of a zk-SNARK (i.e., a non-interactive argument system for NP
with the properties of zero knowledge, proof of knowledge, and succinct verification in the preprocessing
model). Moreover, our implementation efficiently supports NP statements expressed as the correct execution
of a program on a random-access machine or (via a compiler we wrote) expressed as the correct execution
of a C program. Our contributions can be summarized as follows:

1) Verifying circuit satisfiability via linear PCPs. We obtain an implementation of zk-SNARKSs for (arith-
metic) circuit satisfiability with essentially-optimal asymptotic efficiency: linear-time generator, quasilinear-
time prover, and linear-time verifier. Moreover, proofs consist of only 12 group elements (a total of 2576
bits for 80-bit security), independently of the circuit C or the input x to C.

Our approach consists of two steps. First, we optimized and implemented the transformation of Bitan-
sky et al. [BCI™13]; our optimizations rely on multi-exponentiation algorithms (see [Ber02] and references
therein) and on a specialized choice of elliptic curve. Second, by building on the work on quadratic arith-
metic programs (QAPs) of Gennaro et al. [GGPR13] and by leveraging algebraic structure of a carefully-
chosen field, we give an efficient implementation of a linear PCP with a low-degree verifier. When verifying
that z € L, our linear PCP has 5 queries of 2|C| field elements each; each query can be generated in
linear time; the prover can compute the linear proof oracle via an arithmetic circuit of size O(|C|log|C/)
and depth O(log |C|); the answers to the 5 queries can be verified with O(|z|) field operations.

2) From correctness of program execution to circuit satisfiability. The SNARKs generated by the
previous transformation are for proving the satisfiability of a given (arithmetic) circuit. However, programs
are easier to write using high-level programming languages, like C, and it is often not realistic to require
an arbitrary application to already provide a circuit encoding the NP statement of interest. We address
this problem by providing a “circuit generator” that differs significantly and qualitatively from all previous
implementations of circuit generators (e.g., Fairplay [MNPS04, BDNPOS]): it leverages nondeterminism
to reduce the size of the output circuit. Specifically, previous circuit generators produce circuits of O(T?)
size for T-step computations in the worst case, whereas our generator produces circuits of only O (7' logT')
size.” In more detail, our solution to the circuit generation problem is as follows:

(i) We design a minimalistic random-access machine, called TinyRAM. It supports nondeterministic wit-
nesses, which are supplied via a designated auxiliary-input tape.

(i) We obtain a transformation that takes as input a TinyRAM program P and a time bound 7" and outputs
a circuit whose satisfiability encodes the correct execution of P for up to 7' steps. Building on the
approach of Ben-Sasson et al. [BCGT13a], our transformation greatly improves efficiency by leveraging
field operations and nondeterminism in order to verify several types of crucial (boolean) computations
via smaller arithmetic circuits. We implemented our transformation.

3See Appendix C (especially C.2) for an extended discussion of previous circuit generators.



(iii)) We complement the above transformation with a GCC backend, for compiling programs written in a
subset of C into TinyRAM assembly. This compiler provides a convenient way to obtain TinyRAM
programs for problems of interest. Crucially, we can efficiently support arbitrary and data-dependent
loops, control flow, and memory accesses.

Our choice of architecture for TinyRAM strikes a balance between allowing for efficient compilation of
programs into assembly code, and the need to design small circuits for verifying correctness of the transition
function of the machine.

Delegation for NP programs. Combined, our contributions yield a system for verifying program exe-
cutions succinctly and in zero knowledge. (See Figures 1 to 2 on the next page for a high-level system
overview.)

In particular, our contributions provide a solution for non-interactively delegating arbitrary NP computa-
tions, also in a way that does not compromise the privacy of any input that the untrusted worker contributes
to the computation. Previous implementation work did not achieve many of the features enjoyed by our
implementation. (See Appendix C for a comparison with prior implementation work.)

Reusable components. Our contributions are independent in that each can be useful without the others:

e If one designed a linear PCP for circuits that is more efficient than ours, it could be plugged into our
transformation to SNARKSs. Moreover, such a linear PCP would also benefit from our circuit generator
for TinyRAM programs, and our compiler from C programs to TinyRAM assembly.

e If one had an NP problem already represented via arithmetic circuit satisfiability (for instance, this is
simple to achieve when considering “structured” computational problems such as evaluating FFTs) then
there is no need to reduce from C (or TinyRAM) programs, so one could directly invoke our zk-SNARK.

e Our reduction from C programs to circuit satisfiability can be used in conjunction with other proof sys-
tems built for circuit satisfiability (or other related algebraic satisfaction problems). For instance, it can
be used with many recent constructions of non-interactive zero-knowledge proofs [GOS06a, GOS06b,
AF07, Gro09, Grol0a, Grol0b].

On asymptotic vs. concrete efficiency. In our discussion, we describe both the asymptotic complexity of
abstract algorithms, and the concrete complexity (measured in seconds or CPU cycles) of concrete imple-
mentations. Concrete implementations are upper-bounded by computer memory size (and ultimately, the
computational capacity of the universe), and thus their asymptotic behavior is ill-defined. Nonetheless, for
conciseness, we will at times refer to the asymptotic complexity (e.g., “quasilinear”) of an implementation,
by which we mean the asymptotic complexity of the implemented algorithm. Since the constants involved
are (in our case) small, the asymptotic behavior indeed “kicks in” early enough for this to be a useful aid for
understanding concrete complexity.

1.4 Roadmap

In Section 2 we discuss in more detail how we reduce correctness of program execution to circuit satis-
fiability. In Section 3 we discuss in more detail how we verify circuit satisfiability via linear PCPs. In
Section 4 we provide a combined system evaluation. Definitions and other details appear in the appendices,
and appropriate pointers will be given throughout the paper.



Offlin
(o

Tiny

e Phase
nce)

RAM time
program bound

primary
input

size

|
' |

|
'

Key Generator

circuit
generator

l circuit

zk SNARK
key generator

provi

'

ng key

verification key

Figure 1: Offline phase (once). The key generator computes a (long) proving key and a (short)
verification key, respectively for proving and verifying correct (nondeterministic) computations
of a given TinyRAM program, for at most a given number of time steps on primary inputs of a
given size. Our compiler can be used to obtain TinyRAM programs from C programs.

Online Phase
(any number of times)

proving

key

prover

proof

primary

verification
key

input

Verifier

zk SNARK

TinyRAM  time primary
program bound input
|
Prover ; ;
witness assignment | zk SNARK
map
[}

auxiliary input
(nondeterminism)

verifier

accept/reject

Figure 2: Online phase (any number of times). The prover sends a non-interactive publicly-
verifiable proof to a verifier, who can check the proof with only a linear number of cryptographic
operations in the primary input size. This phase can be repeated any number of times, each time
for a different input to the program.



2  From Correctness of Program Execution to Circuit Satisfiability

As summarized in Section 1.3, we implemented an efficient transformation that reduces correctness of pro-
gram execution to circuit satisfiabiliy. The following gives further design and performance details about this
transformation. Concretely, in Section 2.1 we motivate and discuss our choice of architecture, TinyRAM.
Then, in Section 2.2, we discuss implementation and performance of our compiler from C to TinyRAM
assembly. Finally, in Section 2.3, we discuss implementation and performance of our reduction from the
correctness of TinyRAM assembly to circuit satisfiability.

2.1 The TinyRAM Architecture

To reason about correctness of program executions, we first need to fix a specific random-access machine.
An attractive choice is to pick the instruction set architecture (ISA) of some existing, well-supported family
of CPUs (e.g., x86 or ARM). We could then reuse existing tools and software written for those CPUs. This
is possible in principle.

However, the design of CPUs typically focuses on efficient ways of getting data and code, at the right
time, to the different executions units of the CPU, with the goal of maximizing utilization of these units.
This is achieved by complex mechanisms whose size can dwarf the functional core circuitry (execution
units, register file, instruction decoding, and so on). Thus, modern CPUs afford, and employ, large and rich
instruction sets. As explained next, the efficiency considerations are very different in our context.

Executing vs. verifying. CPUs and their ISAs are optimized for fast execution of programs. However, we
are interested in fast verification of (alleged) past executions. In our setting, the computation has already
been executed and we possess a trace of this execution, giving the state of the processor (registers and flags)
at every time step. Our goal is to efficiently verify the correctness of the trace: that every state in the trace
follows from the preceding one.

This means that values that are expensive to produce during the execution become readily available for
verification in the trace. For example, in real CPUs, reading from external memory is relatively slow and
a large fraction of the circuitry is dedicated to caching data. However, in the trace, the result of a load
from memory is readily seen in the processor state at the end of the instruction’s execution; thus the need
for caches is moot. Similarly, modern CPUs use complicated speculative-execution and branch-prediction
mechanisms to keep their execution pipelines full; but a trace verifier going down the trace can “peek into
the future” and readily observe control flow.

The elimination of the above mechanisms, and many others, affects the ISA. In particular, it means that
the aforementioned functional core circuitry dominates cost. This leads to the next consideration.

Transition function complexity. We are ultimately interested in carrying out the verification of a trace
via a circuit, so we wish to optimize the circuit complexity of the transition function of the ISA: the size
of the smallest circuit that, given two adjacent states in the trace, verifies that the transition between the two
indeed respects the ISA specification.®

We thus seek an ISA that strikes a balance between two opposing requirements: (1) the need for a
transition function of small circuit complexity and (2) the need to produce small and fast machine code, in
particular when compiling from high-level programming languages. Rich architectures allow for smaller
code and shorter execution trace but have transition functions of higher circuit complexity, while minimal-
istic architectures require longer machine code and longer execution traces, but enjoy transition functions
with smaller circuit complexity.

SThis does not include the (crucial) task of checking the correctness of values loaded from random-access memory. Memory
consistency is efficiently handled separately; see Section 2.3.



Modern ISAs designed for general purpose CPUs (such as x86) are complex instruction set computer
(CISC) machines: they support many elaborate instructions (e.g., a round of AES [Guel2]) and addressing
modes. Less rich ISAs are reduced instruction set computer (RISC) machines designed for devices like
smartphones (ARM) and embedded microcontrollers (Atmel AVR). Yet, even these “simple” ISAs are quite
rich: they support many addressing modes, many conditional branches, floating point arithmetic, instructions
for parallel execution, and so on. For example, the ARM architecture has more than 35 SIMD instructions
for addition and subtraction alone [ARM12]; also, even 8-bit versions of the Atmel AVR family support as
much as 25 different conditional branch instructions alone [ATM10].

In sum, we seek a minimal ISA that enables us to design a transition function with small circuit com-
plexity, and yet allows reasonable overheads in code size and execution time (relative to richer ISAs).

A custom ISA. In light of the above, we designed an instruction set architecture, named TinyRAM,
that is tailored for our setting. TinyRAM is a minimalistic RISC random-access machine with a Harvard
architecture and word-addressable random-access memory. It has two parameters: the word size, denoted
W, and the number of registers, denoted K. (When we wish to make this explicit, we write TInyRAMy;, )
The global state of the machine at any time consists of:

the program counter, denoted pc; it consists of W bits;

K general-purpose registers, denoted r0, r1,..., r(K — 1), each consisting of W bits;

the (condition) flag, denoted flag; it consists of a single bit; and

memory, which is a linear array of 2" words of W bits each.

In addition, the machine has two input tapes, each containing a string of W-bit words. Each tape can be
read sequentially in one direction only. The first input tape is for the primary input, denoted x; the second
input tape is for the auxiliary input, denoted w. We treat the primary input as given, and the auxiliary input
as nondeterministic advice. (See Definition 2.1 below.)

We carefully selected the instructions of TinyRAM so to support relatively efficient compilation from
high-level programming languages (like C), as discussed in Section 2.2, and, furthermore, allow for small
circuits implementing its transition function (and other checks), as discussed in Section 2.3. Briefly, the in-
struction set of TinyRAM includes simple load and store instructions for accessing random-access memory,
as well as simple integer, shift, logical, compare, move, and jump instructions. TinyRAM can efficiently
implement complex control flow, loops, subroutines, recursion, and so on. Complicated instructions, such
as floating-point arithmetic, are not directly supported and can be implemented “in software” by TinyRAM
programs. Supporting only fairly simple load and store operations is important for efficiently verifying
consistency of random-access memory; see Section 2.3.

In keeping with the setting of verifying computation, the only input to TinyRAM programs is via its two
input tapes, and the only output is via an accept instruction, which also terminates execution.’

So far we have only informally discussed “correctness of TinyRAM program execution”. This notion is
formalized by defining a TinyRAM universal language.

Definition 2.1. Fix the word size W and number of registers K. Let P be a TinyRAMy, - program, let x
and w be strings of W -bit words. We say that P(x,w) accepts in T steps if P, with x as primary input and
w as auxiliary input, executes the instruction accept in step T.

The TinyRAM universal language is Ly = Uw x Lw, i, where Ly i consists of the triples (P, xz,T)
where P is a TInyRAMy,, ;- program, x is a string of W -bit words, and T' is a time bound, such that there
exists a string w of W-bit words for which P(x,w) accepts in T steps.

A specification for the TinyRAM architecture can be found in [BCG™13].

"For ease of development, the TinyRAM simulator also supports debugging instructions that produce additional outputs. These
are excluded from the execution trace and not verified.



_sumarray:
cmpe 1r4, r5

void sumarray(int size, .
cjmp _end

1 *

iiz* g' load r6, rl
) ! load «r7, r2
int* C)

add r8, r7, r5

¢ . . :> store r3, r8
int 1i;

for (i=0; i<size; i++) { add rl, rl, 1
Cli] = A[i] + B[i]: add r2, r2, 1
add r3, r3, 1

} add rd, r4, 1

J Jjmp _sumarray

end:

Figure 3: Illustrative example of transforming a C program into TinyRAM assembly language.

2.2 A Compiler from C to TinyRAM

The GCC compiler [StGDC] is a versatile framework supporting many source languages (e.g., C and Java)
and many target languages (e.g., x86 and ARM assembly). Internally, the GCC compiler is partitioned into
two main modules [StGDC13]. The frontend is responsible for converting a program written in a high-level
programming language like C or Java into an intermediate representation language called Register Transfer
Language (RTL). The backend is responsible for optimizing and converting RTL code into corresponding
assembly code for a given architecture.

In order to automatically generate TinyRAM assembly for problems of interest, we have implemented a
prototype of a GCC backend for converting RTL code to TinyRAM assembly code. Our prototype backend
works with the C frontend, and can be extended to other programming languages by combining it with
suitable GCC frontends (and providing the requisite standard libraries). Concretely, we have a prototype
that can compile a subset® of C to TinyRAM, with word size W € {8, 16} and number of registers K > 16.
See Figure 3 for an illustrative example.

Because TinyRAM'’s instruction set is quite minimal, any operation not directly supported by TinyRAM
“hardware” (i.e., by a TinyRAM instruction) needs to be implemented in “software”. This incurs overheads
in both the code size (the number of lines in an assembly code) and execution time (the number of instructions
required to execute a piece of code). Initial experiments indicate that both of these overheads are not large,
as discussed next.

Code size overhead. We first evaluate the code size produced when compiling C code examples’ into
TinyRAM assembly using our GCC port, compared to the code produced by standard GCC for some com-
mon architectures: x86, ARM and AVR. Figure 4 on page 12 presents the results of compiling these exam-
ples. The results show that, compared to the RISC architectures (ARM and AVR), the resulting TinyRAM
code is at most three times larger than ARM and significantly smaller than AVR. Compared to x86, which
is a very rich CISC architecture, TinyRAM code is up to four times bigger. We deduce that, at least for
the program styles represented by these examples, the TinyRAM architecture allows for compilation into
compact programs.

8Floating-point arithmetic and static data are not yet implemented, but pose no fundamental difficulty. Most of the C standard
library is not yet implemented; see discussion below.

° The examples, described in Appendix F, are simple, natural C functions we wrote to demonstrate various program styles. They
exercise memory accesses (pointer chasing and the RC4 stream cipher), integer arithmetic (matrix multiplication and polynomial
evaluation), and logical calculations (single-source shortest paths and Game of Life).

10



Execution time overhead. The circuits ultimately produced by our reduction have O(T'logT') gates,
where T is the execution time (measured in machine steps). This execution time depends on the choice of
architecture, and we wish to ensure that TinyRAM does not necessitate very long execution times due to
deficiencies in the instruction set.

To evaluate this, we compiled examples of C code into both TinyRAM machine code and x86 machine
code. In the examples depicted in Figure 5 on page 13, we observe that, in terms of execution time measured
in number of executed instructions, TinyRAM is slower than x86 by a factor of merely 2 to 6, for examples
that represent some realistic computations. This is despite x86 being a very rich CISC architecture, heavily
optimized for minimizing instruction count, which is typically implemented using many millions of gates.
(Recall the difference of executing vs. verifying, discussed in Section 2.1.)

These small overheads are more than compensated by the fact that TinyRAM has a very compact circuit
that verifies the correctness of the transition function. For instance, for a word size W = 16 and number
of registers K = 16, and for a program with 100 instructions, we obtain a 785-gate circuit for verifying the
transition function.

In summary, our experiments show that, even when working with a minimalistic architecture such as
TinyRAM, we do not incur large overheads in code size or number of instructions executed. In Section 2.3,
we discuss the circuit complexity of TinyRAM’s transition function and how to efficiently verify TinyRAM
execution traces.

Looking ahead. The C specification provides a standard library, which C programs liberally rely on.
Our TinyRAM compiler at the moment does not provide support for this library and we are working on
extending its functionality to include it. The two main challenges are implementing those functions that
must be written directly in the underlying machine language, and supporting (or reasonably approximating)
functionality that extends into the program runtime environment, such as file I/O, process management,
inter-process communication (IPC), and other system services.

11



ratio of number of instructions in the program ratio of number of instructions in the program

ratio of number of instructions in the program

Pointer chasing

4 T T
x86 —+—
3.5 ARM —<— 4
AVR —x—
3 -
T T | | | | |
25 —
2 -
15 =
1 ,
05 L h—H—f—k—¢ % * * * * K =
0 | | | | | | | |
0 10 30 40 50 60 70 80 90 100
number of elements in a permutation
Matrix multiplication
4 T T T T T T T
—t——T
3.5 ARM —<— B
AVR —x—
3 ,
25 - =
oL e il
IR R L S o it VS Vil BV
15 —
1 ,
KKK KKK Tk k¢
05 - ,
0 | | | | | | |
5 10 15 20 25 30 35 40 45
matrix dimension
Single-source shortest paths
4 T T T T
X86 —+—
3.5 ARM —x<— 4
AVR —x—
3+ —
25 - —
2 ,
15 —
1 ,
05 L % * * % =
0 I I I I I
20 25 30 35 40 45 50

number of nodes in the graph

ratio of number of instructions in the program ratio of number of instructions in the program

ratio of number of instructions in the program

35

25

15

0.5

3.5

25

15

0.5

3.5

25

15

0.5

Game of Life

T T
x86 —+—
ARM —<— 4
AVR —x—
| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
number of generations in Game of Life
Polynomial evaluation
T T T T
X86 —+—
ARM —<— -
AVR —x—
| | | | | | |
5 10 15 20 25 30 35 40 45
polynomial degree
RC4 stream cipher
T T T T T
x86 —+—
ARM —<— -
AVR —%—
B e S S
I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

number of rounds in RC4 PRG

Figure 4: Ratio of the number of instructions in the compiled program in TinyRAM to the number
of instructions in the compiled program in other architectures (x86, ARM, AVR).

12



ratio of number of executed instructions ratio of number of executed instructions

ratio of number of executed instructions

10

10

10

Pointer chasing

20 30 40 50 60 70 80 90

number of elements in a permutation

Matrix multiplication

T N NN

20 25 30 35 40

matrix dimension

Single-source shortest paths

45

"ttt

20 25 30 35 40 45
number of nodes in the graph

50

ratio of number of executed instructions ratio of number of executed instructions

ratio of number of executed instructions

10

Game of Life

10

40 50 60 70

number of generations in Game of Life

Polynomial evaluation

.
t——
Tt

10

10 15 20 25 30 35 40

polynomial degree

RC4 stream cipher

45

10 20 30 40 50 60 70
number of rounds in RC4 PRG

Figure 5: Ratio of the number of executed instructions in TinyRAM to the number of executed

instructions in x86.

13

100



2.3 An Efficient Reduction from TinyRAM to Circuit Satisfiability

The following describes our efficient reduction from the correctness of TinyRAM executions to F-arithmetic
circuit satisfiability, for any prime field I of sufficiently large size.

2.3.1 The reduction notion

In our setting, a (circuit) reduction is a triple of functions (circ, wit, wit_l) working as follows. The circuit
generator function circ(P, T, n), given a TinyRAM program P, time bound 7', and primary input size n,
outputs a corresponding F-arithmetic circuit C' that encodes the correct computation of P for at most 7’
steps on primary inputs of n words. The witness map function, wit(P, T, x, w), given a pair of primary and
auxiliary inputs (x,w) that make P accept in T' steps, outputs a satisfying assignment a for C(z,-). The
inverse witness map function, wit "' (P, T, z, a), given a satisfying assignment a for C(z, -), outputs w with
the property that (z, w) makes P accept in T steps.

Definition 2.2. A reduction from TinyRAM (for a word size W and number of registers K ) to F-arithmetic
circuit satisfiability is a triple of functions (circ, wit, wit ') such that, for every TinyRAM program P, time
bound T, and primary input size n, the following hold:

o C :=circ(P,T,n) is an F-arithmetic circuit from FW" x F" to F! for some h,1; C’s gates are bilinear; '

o for every (z,w) such that P(x,w) accepts in T steps, C(z, wit(P, T, z,w)) = 0
e forevery (z,a) such that C(z,a) = 0, P(z,wit '(P,T, z,a)) accepts in T steps.

The work on fast reductions of Ben-Sasson et al. [BCGT13a] implies a reduction (circ, wit, wit 1) where |C/|
(the number of gates in C') is O(T'(log T')?) and circ, wit, wit ! all run in O(T (log T')?) time.'! In our work,
we optimize and implement a reduction that builds on the theoretical approach of [BCGT13a]. We focus
our attention only on the efficiency of the circuit and witness maps (i.e., circ and wit), because these need to
be run in practice.'? Before discussing our work, however, we briefly review the approach of [BCGT13a].

2.3.2 The reduction in [BCGT13a]

We begin with necessary basic definitions.

e A (local) state of TinyRAM, denoted S, is a string of (W + KW + 1) bits, encoding the values of the
program counter, K registers, and condition flag at a given time step.

e The transition function of TinyRAM, denoted Iltf, is the predicate that, given a TinyRAM program P
and two states S and .S’, outputs 1 if and only if the machine in state .S can transition (for some choice of
values in random-access memory) to the state S’ in the next step, according to the program P.!3

19A gate with inputs 1, . . ., x,, € Fis bilinear if the output is (a, (1, 1,...,2,))- (b, (1,21,...,2,)) for some a,b € F* !,
where (-, -) denotes inner product. In particular, these include addition, multiplication, and constants gates.

IGiven a space bound S on the computation of P on (z,w), Ben-Sasson et al. also present a reduction where |C| is only
O(T'log T log S). We have so far not considered this additional, significantly more complex, optimization.

2Concretely, the key generator runs circ while the prover runs wit; see Figure 10 and Figure 11 on page 28. In contrast, wit ~*
ensures that “proof of knowledge is preserved” (i.e., wit~! only appears as part of a proof of security). We are thus not particularly
interested in optimizing wit ™', especially because (just as in [BCGT13a]) it can be computed in time that is only O (T (log T')?).

BTraditionally, the transition function is the function that, given the global state of a machine as input, outputs the next state. We
abuse this terminology, and use it for the function that, given two local states .S, S’, decides whether the second can follow the first
(cf. discussion of executing vs. verifying in Section 2.1).

14



e An execution trace'* for a TinyRAM program P, time bound 7', and primary input z is a sequence of
states tr = (S1,...,S7). An execution trace tr is valid if there exists an auxiliary input w such that the
sequence of states induced by P running with input tapes (x, w) is tr.

The goal is to design an F-arithmetic circuit C for verifying that tr is valid that is as small as possible. This

is done in three steps, as follows.

Step 1: code consistency. Let Ctr be a circuit that implements the transition function ITt¢ of TinyRAM:
namely, Ctg(P, S, S") = 1if and only if IITg(P, S, S’) = 1. By invoking Ctf on each pair of successive
states of tr, we can verify every state transition in the trace tr, i.e., ensure that IIT¢(P, S;, S;+1) = 1 for
1=1,...,T — 1. Doing so gives rise to a sub-circuit of C, consisting of T" copies of Ctf, that, when given
as input tr, checks that tr is code-consistent.

Step 2: memory consistency. The global state of a random-access machine also includes memory. In
particular, in order to verify that tr is valid, we also need to verify that tr is memory-consistent: namely, that
every load operation from an address in memory actually retrieves the value of the last store to that address.

But the accesses to memory of a program P depend on the inputs = and w. Hence, in general, at
each time step ¢ any of the addresses in memory could be accessed by the program. The naive solution
of designing the verification circuit C' to maintain a snapshot of the entire machine state (which includes
registers and memory) for each time step is not efficient: such a circuit has size Q(7?). (As discussed in
Appendix C, all previous circuit generators either adopt the naive solution or restrict a program’s memory
accesses to be known at compile time.)

Ben-Sasson et al. [BCGT13a] take a more efficient approach, building on classical results on quasilinear-
time nondeterministic reductions [Sch78, GS89, Rob91]. The high-level idea in [BCGT13a] is that mem-
ory consistency would be easier to verify if the circuit C' were to also have, as additional input, the same
trace tr but sorted according to accessed memory addresses (and breaking ties via timestamps); let us de-
note this sorted trace by MemSort(tr). Concretely, one can define another “local” predicate Iy such
that, if IIyc is satisfied by each pair of adjacent states in MemSort(tr) (and, in addition, tr is code-
consistent) then tr is valid. We can then augment C' with 1" copies of a sub-circuit Cyc that verifies the
predicate ITyc on MemSort(tr). The circuit C'is thus left to verify that the auxiliary input MemSort(tr)
is the result of sorting tr.

Step 3: routing network. The circuit C' can efficiently perform this check if it is given yet another
additional input: (alleged) routing decisions for a routing network which permutes tr into MemSort(tr).
A T'-packet routing network is a directed graph with 7" sources, 1" sinks, and inner nodes (switches) such
that, for any permutation 7: [T'] — [T'], there are routing decisions for the switches that cause 1" packets at
the sources to travel to the 7' sinks, according to the permutation 7, and without using a switch twice (i.e.,
with no congestion). One such a network is the Bene§ network [Ben65], which has O(log T) layers of T
nodes each, and each node in a layer is connected to two nodes in the next layer. The idea is to interpret
the switch settings in a routing network as a coloring on the routing network. Crucially, verifying that the
given switch settings (i.e., a coloring of the network) implement some permutation from the input nodes to
the output nodes can be done via simple and local routing constraints; furthermore, given that the switches
implement some permutation, verifying that they implement the sorting permutation is easy to verify too.
Overall we obtain a certain graph-coloring problem all of whose constraints can be evaluated by a circuit of
size T - O((log T')?), which we add to C.

In sum. The approach from [BCGT13a] described in the above paragraphs yields a circuit C' of size
T - (|Ctel + |Cmc| + O((log T')?)) for verifying the validity of a T-step trace. (See Figure 6 below.)

14 An execution trace is also at times known as a computation transcript [ BCGT13a].

15



AT/
B R
TRl giA
i g

_sumarray:
cmpe r4, r5
cjmp _end
load ro6, rl
load «r7, r2
add r8, r7, r5

store r3, r8 [:::i}

O Q C

end:

add rl, rl, 1 O 0O o
il il vl ’
e S Y LN

A

Figure 6: Verifying the correct execution of a given piece of TinyRAM code (left) is reduced to
satisfiability of a certain constraint-satisfaction problem on a routing network (middle). Then,
an arithmetic circuit (right), given an assignment as input, verifies all the constraints of the
constraint-satisfaction problem.

16



2.3.3 Optimized reduction

As mentioned, in our work we optimize and implement the theoretical approach of Ben-Sasson et al.
[BCGT13a]. Despite the excellent asymptotic efficiency of the approach, getting to the point in which
the verification circuit C' has a manageable size in practice proved quite challenging, both theoretically and
programmatically. For instance: while (as discussed in Section 2.1) we devised TinyRAM to facilitate the
design of a small circuit C'tg for the transition function II1g, how small of a circuit can we actually design?
And how well does its size scale with, say, the word size W, number of registers K, and program size |P|?

Our circuit generator. At high level, our main technical contribution is leveraging

(1) “native” arithmetic in the field F, which for us is a prime field of large characteristic,'” and

(2) nondeterministic advice
to achieve highly-optimized implementations of Ctg, Cpc, and routing constraints, and ultimately obtain
drastic improvements in the size of the verification circuit C' output by our circuit generator circ.

To illustrate the use of (1) and (2), consider the basic task of multiplexing bit vectors, used numerous
times in C. Given n vectors aj, . . . , a, of £ bits each, and a [log n]-bit index i, we seek a small F-arithmetic
circuit that computes the vector selected by the index. A naive multiplexer circuit requires ©(n (¢ 4 logn))
bilinear gates.!® In contrast, by relying on (1) and (2), we design a multiplexer circuit that needs only
O(n[%]) bilinear gates. The efficiency improvement is significant because we ultimately need to work
with cryptographically-large fields; for instance, in our setting where F = ;. and r is an 181-bit prime, if
n = ¢ = 16, the naive implementation uses 320 gates while we only use 51.

The idea of our multiplexer construction is as follows. Suppose, first, that every input vector a;, as
well as the index i, were represented as integers, and we only had to design a Z-arithmetic circuit to output
the integer representing the selected bit vector. In this case, we could easily construct a nondeterministic

Z-arithmetic circuit of size O(n) (with bilinear gates of unbounded fan-in): guess variables b1, . . ., b, such
that )" ; b; = 1 and {b; - (i —¢) = 0}, and then output the inner product of the vector (b1, ..., by) and
the vector (ay, ..., a,). However, the a; and i are only given to us as strings of bits, and we need to work

with F-arithmetic circuits. This gap motivates two fundamental operations: packing and unpacking of bit
vectors. Packing denotes mapping a bit vector (using one field element per bit) into a shorter sequence of
field elements that represent those bits using a denser encoding; unpacking denotes the inverse operation.
The packing operation is very efficient: in the prime field F, with » > 2¢, a single gate suffices to compute
Zle 2i=1g; from the input a1, . . ., as. The inverse operation is much more expensive to compute directly,
but we can nondeterministically guess the answer and verify it using a single gate. In general, r > 2°
need not hold, so we use (ﬁ] field elements to store an ¢-bit vector. Given the aforementioned efficient
packing operations, our multiplexer construction works as follows: it guesses the selected £-bit vector, then
computes the integers corresponding to the input ¢-bit vectors as well as the index, and then verifies the
guess by selecting the correct integer according to the (integer) index.

More generally, we have found that, throughout our circuit generator, it is often advantageous to main-
tain, alongside certain vectors a, also the corresponding (densely-packed) integer ) . 211,

With these techniques in mind, we proceed to describe the circuit generator.

e Designing the transition function circuit Ctg. The circuit Ctf is the most complex sub-circuit of C'. The
size of Ctf is dominated by the size of sub-circuits for multiplexing bit strings (for instruction fetch,

'S As required by the underlying zk-SNARK for circuit satisfiability; see Section 3.
'S For example: for eachi = 1,. .., n, multiply a; by 1 if i represents 4, and by 0 otherwise, using ©(log n + £) gates per i; then
forj =1,...,4, produce the j-th output bit using one fan-in-n adder per j.

17



register fetch, and so on) and of the arithmetic logic unit (ALU), which executes the architecture’s non-
memory operations.

To obtain an efficient implementation of the ALU (or, more precisely, a circuit verifying its operation),
we again make use of field arithmetic and nondeterministic advice. Since we work over a prime field
of large characteristic, field arithmetic looks like integer arithmetic whenever there is no “wrap around”.
Thus, after fetching the arguments of an operation, we make sure to have both the binary and integer rep-
resentation for each argument. Then, each operation in the ALU uses whichever representation is more
efficient to use. For instance, bitwise AND, OR, XOR, and NOT are computed using binary representa-
tions. In contrast, we use integer representations to compute result and overflow information for addition,
subtraction, and multiplication with only 2W, 2W, and 3W bilinear gates, respectively. For division,
we nondeterministically guess the result and verify it with a multiplication. Each time an operation uses
integer representations, the output integer can be “unpacked” into its binary representation, via nondeter-
ministic advice. By carefully studying each operation, we obtain a (nondeterministic) circuit for verifying
the ALU that, with word size W = 16, has merely 343 gates.

Given efficient implementations of multiplexing and the ALU, it is possible to obtain an efficient im-
plementation of C'tg. Table 1 below shows the number of gates in our implementation of C'tg for
|P| € {10,10%,10%}, W € {8,16,32} and K € {8, 16,32}.

[P[ = 10/100/1000 W =38 W =16 W = 32 W = 64
K=38 482757271472 | 619/709/1609 | 892798271882 | 1437/1527/2427
K =16 558/648/1548 | 695/785/1685 | 968/1058/1958 | 1513/1603 /2503
K =32 706 /796 /1696 | 843/933/1833 | 1116/1206/2106 | 1661 /1751 /2651
K =64 998 /1088 /1988 | 1135/1225/2125 | 1408 /1498 /2398 | 1953 /2043 /2943

Table 1: Number of gates in Ct as a function of W and K, for different sizes of program P.

Designing the memory consistency circuit Cyc. The predicate IIpc is not as complex as the transi-
tion function Iltf, but it is still important to design a small circuit Cy¢c for it. A crucial optimization
is afforded by the fact that IIyyc only cares about the memory address being accessed, and the value
loaded/stored, in each state. Deriving these values from the state requires instruction parsing and register-
file multiplexing, but it turns out they have already been computed on “the other side” of the routing
network, by Ctg, when verifying code consistency. Thus, we change the routing network (discussed
below) to route only such pairs of address and value; there remains for IIyc merely to check a simple
ordering condition on this. We thereby obtain a circuit Cyc that only contains two integer comparisons
and few other logical operations. For instance, when W = 16, Cjc consists of just 64 gates.

Checking routing constraints. Asymptotically, the routing constraints on the routing network are the most
expensive sub-circuit of C': there are © (7 log T") nodes in the routing network, compared to 7" copies of
CtF and Cyc each. It is thus crucial to check these constraints as efficiently as possible. As discussed for
IImc, it suffices to route packets consisting of just 2WW bits (obtained from intermediate computations of
CF), instead of whole TinyRAM states. This leads to another important optimization: now that a packet
is small, we can pack a whole packet into a single field element (in our typical parameters, |F| > 22W);
then, because the packets consist of single field elements, computing the routing constraints becomes
particularly simple: only one bilinear gate per vertex. Concretely, the gate at a given vertex checks
whether the vertex’s packet is equal to at least one of the packets at the two neighbor vertices in the next
layer. Overall, when 7' is a power of 2, all routing constraints can be verified with only 2- 7" - log I’ gates.

18



We thus also obtain an asymptotic improvement, by a log 7T’ factor, over the circuit size in [BCGT13a],
where routing constraints required O(T (log T')?) gates. This holds since the size of IF must be w(T) for
cryptographic reasons.

There are numerous additional details that go into our final construction of the verification circuit C'. (For
instance, another asymptotically-significant component, contributing an additional 2 - T" - log T" gates, orig-
inates from 27" integer comparisons on log T™-bit integers.) The eventual circuit sizes are as follows, fixing
for concreteness a word size W = 16, number of registers X = 16, and a program length |P| of 100
instructions. The size of C' grows with T" (when T is a power of 2) as follows:

IC|=4-T -logT +892-T + 37 .

In particular, for log T < 20, every cycle of TinyRAM computation costs < 972 gates to verify. Note that,
while the gate count per cycle increases as 1" increases (since the number of routing constraints grows as
O(T'logT)), the growth rate is slow: doubling 7" costs only 4 + o(1) additional gates per cycle. See Table 2
for values of |C|/T for logT = {10,...,20}.

T [ |C]/T
2101 932.04
2 | 936.02
212 1 940.01
213 | 944.00
21 | 948.00
215 1 952.00
216 | 956.00
217 | 960.00
218 | 964.00
219 | 968.00
220 | 972.00

Table 2: Number of gates per TinyRAM cycle, with |P| = 100, W = 16, and K = 16.

From a software engineering point of view, we tackled the construction of the verification circuit C
by developing a library of circuit gadgets, along with functions for composing these gadgets in a clean
and modular way. This simplifies future modifications to our circuit generator for application-dependent
extensions and customizations, such as supporting other instruction sets, other memory addressing modes,
and so on.

Witness map. Thus far, we have focused on achieving soundness: verifying the validity of an execution
trace of a TinyRAM program P by using the circuit C' := circ(P, T', n) output by the circuit generator circ.
The circuit generator is run by the key generator when computing the public parameters. (See Figure 10
on page 28.) Let us now turn to completeness: we need to implement a witness map wit(P, T, z, w) that
computes a satisfying assignment a for C(z, -), whenever P (z, w) accepts in T steps. The witness map is
run by the prover when generating a proof. (See Figure 11 on page 28.)

The witness map wit consists of two main steps.

1. From inputs to execution trace. We implemented a TinyRAM simulator, denoted Simulate, that, given as
input (P, T, x, w), outputs the T-step execution trace tr of P on inputs (z, w). This step is conceptually
straightforward: it is implemented as a fetch-and-execute loop written in a high-level language, C++.
Unlike the subsequent steps, it does not involve circuit representation. Performance of the simulation
inessential, since, in the full prover, running time is dominated by subsequent steps.

19



2. From execution trace to satisfying assignment. We implemented a function, denoted ExtendAndRoute,
that, given a valid T-step trace tr for P(z, w), outputs a satisfying assignment a for C'(x, -). Computing
a involves several sub-steps, corresponding to finding suitable satisfying assignments to the different
sub-circuits of C, as we now describe.

The first task is to deduce from tr a satisfying assignment for each copy of Ctg in C. In order to
satisfy the i-th copy of Cr, it is not enough to provide the i-th and (i + 1)-th line in the trace tr as
input to the ¢-th copy of Ctg. Indeed, each copy of Ctg also expects nondeterministic advice. (For
instance, each multiplexer in Ctg expects auxiliary advice; and so do many sub-circuits of the ALU,
such as the sub-circuit responsible for verifying a division’s result.) Thus, in this step we compute the
necessary auxiliary advice for each copy of Ct.

The second task is to deduce from tr a satisfying assignment for each copy of Cc in C. We do so by
first stable-sorting the trace tr, by address accessed, in order to obtain MemSort(tr). Then, we provide
the -th and (¢ + 1)-th line in the trace MemSort(tr) as input to the i-th copy of Cuc. Similarly as
before, each copy of Clyc also requires various nondeterministic advice, mostly consisting of internal
wire values of computations of the corresponding copy of Cr.

The third and final task is to deduce a satisfying assignment to the sub-circuit of C' responsible for
checking that MemSort(tr) is a suitable sorting of tr. To do so, we deduce from tr and MemSort(tr)
the permutation 7 that we need to route on the BeneS$ network; we then compute the switch settings
for the network by using a standard routing algorithm [Ben65, Wak68, OTW71, Lei92, NS82]; from
these switch settings and tr, we can then deduce the satisfying assignment. Asymptotically, this is the
most expensive part of the witness map.

The above concludes the description of our witness map wit.

20



3 Verifying Circuit Satisfiability via Linear PCPs

As summarized in Section 1.3, we have implemented a zk-SNARK for (arithmetic) circuit satisfiability; see
Section 1.1 for an informal definition of this cryptographic primitive, or Appendix A for a formal one. In
this section we describe the design and performance of this part of our system.

Our high-level approach to obtain the zk-SNARK is as follows. First, as shall be discussed in Section 3.1,
we optimized and implemented the transformation of Bitansky et al. [BCI™13]; the transformation takes as
input any honest-verifier zero-knowledge (HVZK) linear PCP and outputs a zk-SNARK.!” (More precisely,
the linear PCP needs to be one where (i) queries are random evaluations of low-degree polynomials, and (ii)
answers to the queries can be verified via a collection of degree-2 polynomials.) Second, as shall be dis-
cussed in Section 3.2, we provide an efficient implementation of a HVZK linear PCP for circuit satisfiability.

3.1 A Transformation from Any Linear PCP

We begin by discussing efficiency aspects of the transformation from a linear PCP to a corresponding
SNARK. To do so, we first recall (at high level) the transformation itself.

Constructing a SNARK from a linear PCP. The transformation of Bitansky et al. [BCI*13] consists of
an information-theoretic step followed by cryptographic step.

o Step I (information-theoretic): compile the linear PCP into a 2-message linear interactive proof (linear IP),
i.e., one where the prover is restricted to only apply linear functions to the verifier’s message.

This is achieved by adding a consistency-check query, which is a random linear combination of the linear
PCP queries. In more detail, if the linear PCP has k queries each with m elements from a field F, in
the resulting linear IP the verifier sends to the prover a single message g consisting of m' = (k + 1)m
elements in [F; the message q is the concatenation of the k linear PCP queries and the consistency-check
query. A (potentially malicious) prover is restricted to only apply linear functions to g, i.e., reply with
a vector a* € F*+1 such that a* = II*q + b* for some IT* € F*+TDxm" and b* € FF+1. The honest
prover simply returns the vector a = (ay,...,ax+1) where a; = (m, q;), g; is the i-th m-element block
of g, and 7 is the linear PCP proof. A prover’s message a* is verified by checking consistency of ay_
with a7, ..., aj, and then invoking the linear PCP decision predicate on a7, . .., a}; the consistency check
ensures that a} = (7*, g;) for some linear PCP 7*.

o Step 2 (cryptographic): compile the linear IP into a SNARK, by forcing any polynomial-size malicious
prover to act as if it were a linear function.

This is achieved using a cryptographic encoding Enc(-) with the following properties.

(i) It allows public testing of quadratic predicates on encoded elements.
(i1) It provides a certain notion of one-way security to encoded elements.
(iii) It ensures that any polynomial-size prover can only perform linear operations on the encoded ele-
ments, “up to” information leaked by the encoding.'®

17 As mentioned in Section 1.2, a linear PCP is a PCP where the honest proof oracle is a linear function over an underlying finite
field F, and soundness is required to hold only for linear proof oracles. The HVZK property is the same as in a standard PCP. See
Appendix D for definitions.

18Since the encoding cannot provide semantic security (due to the functionality requirement of allowing for evaluation of
quadratic predicates on encoded elements) but only a notion of one-way security, a limited amount of information about the under-
lying elements is necessarily leaked.

21



Given Enc(-), the compilation is then conceptually simple. The SNARK generator G(1*, C') samples a
verifier message q € F™ (which depends on the circuit C but not its input) for the linear IP, and outputs,
as a proving key, the encoding Enc(q) = (Enc(g;))?*,. (We omit here the discussion of how the short
verification key is generated.) Starting from Enc(q) and a linear PCP proof 7, the honest SNARK prover
P homomorphically evaluates the inner products (7, q;) and returns as a proof the resulting encoded
answers. The SNARK verifier checks a proof by running the linear IP decision predicate (which is a
collection of quadratic predicates) on the encoded answers.

The encoding Enc(-) needed for Step 2 can be based on knowledge-of-exponent assumptions [Dam92,
HT98, BP04], and requires us to fix F = F, for some prime r. Also, from the discussion above it is not clear
why the elements in g need to be random evaluations of low-degree polynomials; this requirement arises,
for security reasons, in Step 2. For definitions and details, see [BCIT13].

Computational overheads. The transformation from a linear PCP to a SNARK introduces several com-
putational overheads. In Step 1, the only overhead is due to the consistency-check query, and is minor.
However, the cryptographic overheads in Step 2 are significant, and require optimizations for practical use.
Specifically:
e The SNARK generator G, after sampling ¢ € F™', must compute Enc(q) = (Enc(¢;))},. In other
words G has to compute the encoding of m’ = (k + 1)m field elements.

e The honest SNARK prover P must compute Enc({(wr, q;)) fori = 1,..., k+1, starting from Enc(q) and
the linear PCP proof 7 € ™. In other words, P has to homomorphically evaluate k + 1 inner products.

In our case, the linear PCP we use (see Section 3.2) is over the field F = F,., where r is a 181-bit prime;
the linear PCP has k = 5 queries and m = O(|C/) field elements per query. Furthermore, the encoding we
use is Enc(y) = (g7, h") where g, h are, respectively, generators of groups G, Gz of order r. The linear
homomorphism is Enc(ay+b8) = Enc(v)*Enc(8)? with coordinate-wise multiplication and exponentiation.

Therefore, G and P must compute a large number of exponentiations in G, G,. These dominate the the
complexity of G and P, and thus their efficiency is essential.

Efficiency optimizations. We address the aforementioned cryptographic bottlenecks as follows.

(a) Reducing the number of group operations in P. The SNARK prover P faces several large instances of
a multi-exponentiation problem, a well-studied computational problem in applied cryptography [Ber02].
The problem is as follows: given group elements g1, ..., gm € G (here, G = G; or G = G2) and 181-
bit integers ay, . . . , am, compute [ g*. In order to reduce the number of group operations required
to compute this product, we implemented a suitable choice of multi-exponentiation algorithm [BC89].
Compared to the naive approach of “exponentiate and then multiply”, we save a multiplicative factor of
25 already for m = 10° (and the savings increase with m).

(b) Reducing the number of group operations in G. The SNARK generator G is instead faced with
several large instances of the following exponentiation problem: given a group element g € G and
181-bit integers aq, . . . , a,,, compute the tuple (g%, ..., g% ). We reduce the number of required group
operations by using the standard technique of pre-computing a table of powers of g, and then reusing
these values in each subsequent exponentiation. We thus save a multiplicative factor of 23 in the number
of group operations (over the naive approach of performing a “fresh” exponentiation for each term).
Precomputing more powers of g provides even greater savings, at the expense of more space usage.

(c) Reducing the cost of group operations. We sought instantiations of the groups G; and G, that offer
particularly efficient group operations.

22



A crucial requirement is that G; and G2 must admit an efficient pairing (non-degenerate bilinear map)
e: Gy x Gy — G, where G is a “target” group (also of order r); indeed, the pairing e provides
the necessary functionality to publicly test quadratic predicates on encoded elements. We focus on
asymmetric pairings (where G; # Gg), because of the extra flexibility in group choices at a given
security level. Concretely, we work with the (reduced) Tate pairing [FR94, FMRO06].

Thus, we need to find a suitable pairing-friendly elliptic curve E, defined over I, for a prime ¢, and set
G1, G2, G equal to suitable subgroups of E(F,), E (]Fqk), F;k, respectively. (For a field extension K of
F,, E(K) is the group of K-rational points on the curve E; and k is known as E’s embedding degree.)

Concretely, in order to optimize the efficiency of multiplication and squaring in G; and G2, we need to:
(i) minimize the number of operations in [, needed for carrying out group multiplication and squaring;
and
(ii) do so without making ¢ much larger than r, that is, without making the value p := }ggg too large.
Furthermore, to allow for an efficient implementation of the underlying linear PCP (via suitable FFTs in
F,; see Section 3.2), we require smoothness: r — 1 should be divisible by a “large enough” power of 2.

Thus, we seek a pairing-friendly elliptic curve E that simultaneously addresses all of these requirements.
Our strategy for finding a suitable curve E is as follows."”

e To address (i), we focus our attention to elliptic curves in which 4 divides the group order. Any such
curve is birationally equivalent to an Edwards curve [Edw07], and group operations are particularly
efficiency for Edwards curves [BLO7] and, more generally, twisted Edwards curves [BBJT08].

e To address (ii), we consider parametrizations of Galbraith et al. [GMVO07], which generalize the
approach of Miyaji et al. [MNTOI] to include known cofactors in the group order. Specifically,
we use a parametrized family specified by a quadratic polynomial ¢(x) and a linear polynomial
t(x) such that, for any integer a such that ¢(a) is prime and |t(a)| < 24/q(a), there is an elliptic
curve E over F, with order n(a) := ¢(a) — t(a) + 1, embedding degree k = 6 (which makes the
curve pairing friendly), and n(a) divisible by 4 (which makes the curve birationally equivalent to
an Edwards curve). If the square-free part of |4g(a) — t(a)?| is not large, E can be constructed via
the method of complex multiplication [AM93]. Next, letting (a) be the largest prime divisor of

n(a), we set Gy and G to be subgroups of order 7 = r(a) of E(F,) and E(F ) respectively.*’

log q

Togr 1S ~ 1. For

By selecting a so that r(a) is sufficiently large, we can ensure that the value p =
security, we take log r(a) > 160, and get at least 80 bits of security [FST10].

e To address the smoothness requirement (i.e., 7 — 1 being divisible by a large power of 2) we proceed
as follows. For any fundamental discriminant D < 0, the quadratic equation 4q(z) — t(x)? =
y?D in the variables x,y can be transformed, via a linear map on x, to a generalized Pell equation
22 — Ay? = B (where A > 0 and B are integers). Integer solutions to the Pell equation “often”
correspond to “good” integer solutions to the original equation. Thus, we iterate over fundamental
discriminants in order of increasing magnitude and, for each fundamental discriminant D, we try to
derive good solutions to 4¢(z) —t(z)? = 32D by relying on a Pell-equation solver [Sma99] invoked
on the corresponding equation 2 — Ay? = B. Heuristically, we need to “see” 2(2¢) Pell-equation
solutions before finding a good solution, for some sufficiently small D. Crucially, the values of ¢
that we are interested in practice are such that finding Q(2%) solutions is a tractable problem, though
one that requires significant computing resources (see Section 3.3).

“The authors are grateful to Andrew Sutherland for generous guidance here.
2More precisely, due to optimizations having to do with computing the (reduced Tate) pairing e, G2 is subgroup of E'(F3),
where E’ is a quadratic twist of £ [ALNRI11].

23



We carried out the above strategy, and the resulting algebraic setup is given in Section 3.3.

(d) Reducing the number of G group operations in G and P. Working with an asymmetric pairing
causes G operations to be about three times more expensive than G; operations. We modify the cryp-
tographic transformation of [BCI™ 13], for the specific case of our linear IP construction, so that only a
R %0 fraction of the generator’s and prover’s group operations have to be carried out in G, while for
the rest it suffices to carry them in G;.

We conclude the discussion about efficiency optimizations by noting that the cryptographic computations in
both the key generator and prover are highly-parallelizable; thus, their latency can be greatly improved. Our
prototype implementation does not seek to reduce latency or exploit parallelism. (See Section 4.4.)

3.2 An Efficient Linear PCP

In the previous section we discussed how to ensure that the transformation from a linear PCP to a cor-
responding SNARK adds as little computational overhead as possible. In this section, we discuss the
problem of implementing a linear PCP for arithmetic circuit satisfiability that is as efficient as possible.
First, let us recall that the circuit satisfaction problem of a circuit C: F* x F* — F' is the relation
Ro = {(z,a) € F* x F* : O(x,a) = 0'}; its language is Lo = {x € F* : Ja € F*, C(z,a) = 0'}.

Our linear PCP. Our technical starting point for constructing a linear PCP for R¢ is the work on
quadratic-span programs (QSPs) and quadratic-arithmetic programs (QAPs) of Gennaro et al. [GGPR13].
Indeed, Bitansky et al. [BCI™13] observed that

e any QSP for a relation R yields a corresponding 3-query linear PCP for R, and

e any QAP for a relation R yields a corresponding 4-query linear PCP for R.

By following the QAP approach of [GGPR13], we design a linear PCP for the relation R¢ that trades an
increased number of 5 queries for a construction that, while keeping essentially-optimal asymptotics, enjoys
excellent efficiency in practice.

Concretely, for checking membership in the language L¢ for a circuit C, our linear PCP has only 5
queries of 2|C'| field elements each (and sampling the 5 queries needs only a single random field element);
generating the queries can be done in linear time. The 5 answers of the queries can be verified via 2 quadratic
polynomials using only 2n + 9 field operations, where n is the input size. The soundness error is 2|C|/|F]|.
Using suitable FFTs, the honest prover can compute the linear proof oracle via an arithmetic circuit of size
O(|Cllog|C]) and depth O(log |C|). (In particular, the prover is highly parallelizable.)

Efficiency optimizations. While there exists a variety of FFT algorithms, the most efficient ones are
tailored to fields with special structure. With this in mind, we choose the prime 7, which determines the
field F,. for the linear PCP, so that 7 — 1 = 2%m for a “large enough” integer ¢. Then, F, contains a primitive
2¢-th root of unity, so multi-point evaluation/interpolation over domains consisting of roots of unity (or their
multiplicative cosets) can be performed via a simple and efficient radix-2 FFT algorithm. This results in
the aforementioned complexity for the honest prover. Furthermore, working over such [F, simplifies the
linear-time algorithm for sampling queries.

More precisely, when working with the language Lc, we need 2¢ > |C| to hold. In practice, £ > 30
seems adequate for the problem sizes of interest, so we chose ¢ = 30 in our implementation. Larger values
of ¢ can be substituted to support circuits C with |C| > 239 (see Section 3.3).?!

Zero knowledge. The transformation from a linear PCP to a SNARK is such that if the linear PCP is honest-
verifier zero-knowledge (HVZK) then the SNARK is zero knowledge. (See Appendix D for a definition of

2! While requiring that r — 1 be smooth complicates the search for an elliptic curve satisfying all of our requirements and the
search’s complexity grows with 2¢ (see Section 3.1), smoothness is crucial for leveraging tailored FFT algorithms in the prover.

24



HVZK.) Thus, we need to ensure that our linear PCP is HVZK. Bitansky et al. [BCI™ 13] showed a general
transformation from a linear PCP to a HVZK linear PCP of similar efficiency. We do not rely on their
general transformation. Instead, our linear PCP is made HVZK with essentially no computational overhead,
via a simple modification analogous to the one used in [GGPR13] to achieve zero knowledge. Thus, the
SNARK obtained from our linear PCP has (statistical) zero knowledge.

For more details on our linear PCP construction, see Appendix E.

3.3 Performance

Plugging our linear PCP for arithmetic circuits (Section 3.2) into the transformation (Section 3.1), we obtain
an implementation of zk-SNARKSs for arithmetic circuit satisfiability with essentially-optimal asymptotic
efficiency: linear-time key generator, quasilinear-time prover, and linear-time verifier. In this section, we
discuss concrete performance of our implementation.

Instantiation of G, Ga, G and pairing. We begin by describing the algebraic setup that provides a
concrete instantiation of the prime-order groups G and Gs. We consider an Edwards curve F defined over
the field F, where ¢ is a prime of 183 bits. The curve group E(FF,) has order 4r where 7 is a prime of 181
bits. In particular, the value p = }2% is approximately 1.011. Moreover, r — 1 is divisible by 23,

The group G is a cyclic subgroup of E(FF,) of order r, and Gy is a cyclic subgroup of E'(F ) of
order r where E is a quadratic twist of E (thus E’ is a twisted Edwards curve [BBJT08]); this instantiation
provides 80 bits of security [FST10]. (In particular, the security parameter is now implicit and we thus omit
it as an explicit input to the SNARK key generator in the discussion below.) Thus, each G; group element
(when compressed) is 184 bits; each G2 group element (when compressed) is 550 bits.

The curve F was found, after ~ 238 trials, by following the strategy outlined in Section 3.1. The same
strategy can be used, with more trials, to find curves where r — 1 is divisible by a larger power of 2: roughly
Q(2) trials are needed to find a choice of parameters where 2¢ divides r — 1.

Taking the “target” group G to be a suitable subgroup of IF;6 (since the embedding degree of E'is 6), we
choose the non-degenerate bilinear map e: G1 X Go — G to be the (reduced) Tate pairing [FR94, FMRO06].

Next, we discuss the concrete performance of the generator, prover, and verifier. Our experiments were
running as single-threaded code on a 2.4 GHz Intel E7-8870 CPU with 256 GB of RAM. (While our pro-
totype does not exploit parallelism, our algorithms are highly parallelizable, so that latency can be greatly
improved, as discussed in Section 4.4.)
Performance of key generation. Given an arithmetic circuit C: F” x F* — F! as input (where F = FF,.),
the SNARK key generator GG outputs:

e a proving key o, consisting of = (11|C| + 2n) group elements from G; and ~ |C| from G2; and

e a verification key 7, consisting of (n + 2) group elements from G; and 6 from Go.
Only 8 random field elements need to be sampled for this computation. A small set of public parameters
provides information, to both the prover and verifier, about the choice of field and elliptic-curve groups;
storing these public parameters requires under 4000 bits. Figure 7 shows the measured number of operations
(in F,., G1, G2) and running time of G(C) as a function of |C| (for some fixed value of n). For instance,
when |C| ~ 2 - 10°, G terminates in less than 20 minutes.
Performance of proving. Given o and (z,a) in the relation R¢, the SNARK prover outputs a proof
consisting of 12 group elements (11 in G; and 1 in Gs). The proof length is 2576 bits (322 bytes). For
comparison, we can fit 4 proofs into a single TCP packet, which is 1460 bytes. Figure 8 shows the measured
number of operations (in F,, G1, G2) and running time of P(o,x,a) as a function of |C| (for some fixed
value of n). For instance, when |C| ~ 2 - 105, P terminates in less than 22 minutes.

25



Performance of verifying. Given 7, an input z, and a proof 7, the SNARK verifier computes the decision

bit. To do so, the verifier evaluates 21 pairings and solves a multi-exponentiation problem of size |z|.>?
Figure 9 shows the measured running time of V' (7, x, ) as a function of |z|. For instance:
e when |z| < 2%, V terminates in less than 103 milliseconds;
e when |z| < 2!7, V terminates in less than 4.68 seconds.
We emphasize that the above performance holds no matter how large is the circuit C.
100 F , 10* F
Fp operations —=— F SNARK key generator —s—
G1 operations —e— sampling linear queries —s—
108 G2 operations —e— 103 F
7L 2
210 L, 107 F
=} =]
= =
E.o6L S oL
8100 F g 10'F
o Gy
Yy =]
=} - L
510° F 2 100 F
e =) F
E S
g 4l e i
10* 101 F
10° F 102 F
102 I L sl il il il sl sl 1l 10.3 I 1 2l il il il il il 1l
10! 102 100 10 100 10 107 108 10 102 100 10 100 106 107 108
number of gates number of gates

Figure 7: Number of operations in F,, G, Gy (left) and running time (right) of the SNARK key
generator G(C') as a function of |C/|, the number of gates in C. Also shown (right) is the time
spent by G just for sampling linear queries; the difference is spent on cryptographic operations
for encoding these queries. As expected, the asymptotic dependence on C' is O(|C|). In both
graphs, the knees are due to cost of building multi-exponentiation tables for G; and Go.

2 If & is a vector of field elements in ., then |z| is the number of elements in the vector. If z is a bit string, then we can take ||
to be the the number of bits in = divided by 181, because we can “pack” 181 bits into a single field element of [F,..

26



number of operations

1010 ¢ 10* F

108

Fp operations —=— F SNARK prover —e—
G1 operations —=— L computing linear PCP proof
10° F G2 operations —e— 8 103 £
108 L, 107 F
[ 3 [
A £ I
107 F g 10 F
L 2 [
o
106 F 2 100 F
£
2
10° F 10 F
10 £ 102 F
103-...|...|...|...|...|...|...| 10_3-...|...|...|...|...|...|. N}
1ot 102 10° 10 100 10° 107 108 10t 102 10 10* 105 106 107
number of gates number of gates

Figure 8: Number of operations F,., Gy, G2 (left) and running time (right) of the SNARK prover
P(o,x,a) as a function of |C|, the number of gates in C'. Also shown (right) is the (quasilinear)
time spent by P just for computing the linear PCP proof; the difference is the (linear) time spent
on cryptographic operations for homomorphically evaluating query answers. As expected, the
asymptotic dependence on C' is O(|C|log|C|). Moreover, for small values of |C| the (linear)
cryptographic overhead dominates; as |C'| increases, the (quasilinear) computation of the linear
PCP proof eventually will dominate.

SNARK verifier —s—
input consistency —s—

number of seconds

" sl 1l 1l 1l 1l 1l 1l
10t 102 100 100 100 10° 107 108
number of bits in the input

Figure 9: Running time of the SNARK verifier V' (7, x, ) as a function of the number of bits in
the input z. Also shown is the (linear) time spent by V just for the checking input consistency;
the difference is for computing a constant number of pairings (21 in total). Recall that the input
to a circuit is generally much smaller than the circuit’s size, so the input size should be thought
of as relatively small. As expected, the dependence on |x| is O(|z]).

27



4 System Evaluation

In Section 2 we discussed our reduction from the correctness of program execution to circuit satisfiabil-
ity, and then in Section 3 we discussed our zk-SNARK for circuit satisfiability. In this section, we dis-
cuss the performance of the system obtained by combining these two components: an implementation of a
zk-SNARK for the correctness of program executions. This system provides a solution for non-interactively
delegating arbitrary NP computations, also in a way that does not compromise the privacy of any input that
the untrusted worker contributes to the computation. Previous implementation work did not achieve many
of the features enjoyed by our system. (See Appendix C for a comparison with prior implementation work.)

4.1 System Overview

The zk-SNARK for the correctness of program executions consists of three algorithms (G*, P*, V*):

e The key generator G*, given a TinyRAM program P, input size n, and time bound 7', outputs a proving
key o and a verification key 7 that can be used to (respectively) prove and verify T-step computations of
P on primary inputs of n words. (The auxiliary input may be longer than n words.)

e The prover P*, given the proving key o, the TinyRAM program P, a n-word primary input z, time bound
T, and auxiliary input w, outputs a proof 7, attesting to the fact that P(x, w) accepts in T steps.

e The verifier V*, given the verification key 7, a n-word primary input x, and proof 7, checks whether
P(x,w) accepts in T steps for some choice of auxiliary input w.

Our GCC-based compiler can be used to obtain TinyRAM programs from C programs. See Figure 10 and

Figure 11 below for an overview of how the three algorithms (G*, P*, V*) are obtained from (circ, wit, wit 1),

which is our circuit reduction, and (G, P, V'), which is our zk-SNARK for circuit satisfiability.

Offline Phase Online Phase
(Once) (any number of tlmes) verification
primary ) ) . ) ) key
TinyRAM  time input TinyRAM  time primary proving primary
program bound size program bound input key input
P T n P T x g x
] ——
* - * *
G CIrc P it V
circuit generator ) wi
witness map
clo 2 o [ d
imulate : zk SNARK zk SNARK
G ¥ assignment prover proof verifier
zk SNARK key generator Extend&Route
| | i
o T
proving key verification key w 0/1

auxiliary input

Figure 10: Overview of offline phase. Figure 11: Overview of online phase.

28




4.2 System Performance

We now discuss the performance of our system, starting with the efficiency of compilation.??

e Compiling. The important efficiency measures of compiling from C code to TinyRAM assembly are
code size (the number of instructions in the generated assembly code) and execution time (the number
of machine steps needed to execute the assembly code). As discussed in Section 2.2, initial experiments
indicate that both code size and execution time for our compiler are only a small multiplicative factor
greater than those incurred when compiling to other architectures (such as x86, ARM, or AVR) by relying
on existing compilers.

Next, we discuss the performance of our implementation of (G*, P*, V*). For concreteness, we fix word
size W = 16 and number of registers K = 16.

e Key generation. The efficiency of the key generator G*(P,n,T") essentially only depends on the number
of instructions in the program P, the input size n, and the time bound 7'. Fixing any 100-instruction
program P, and input size n = 100, we study the efficiency of G*(P,n,T') as the time bound 7" grows.
Specifically, the graphs in Figure 12 on the next page show, as a function of 7', the running time of
G*, the number of gates in the circuit C' (generated by G* as an intermediate value), and the number of
group elements in the proving key o output by G*. (We do not plot the number of group elements in the
verification key 7 output by G*, because the verification key always has n + 2 elements from G; and 6
elements from (G, regardless of the value of T'.)

e Proving. The efficiency of the prover P*(o, P, x, T, w) essentially only depends on the number of in-
structions in the program P, the input size n (i.e., the number of words in x), and the time bound 7.
Fixing any 100-instruction program P, primary input x with n = 100 words, and auxiliary input w, we
study the efficiency of P*(o, P, x, T, w) as the time bound 7" grows. Specifically, in Figure 13 on page
30, we plot the running time of P* as a function of 7. Recall that the proof generated by P always consist
of 12 group elements (regardless of the value of 7', or other inputs)

e Verifying. The efficiency of the verifier V*(7, z, x) essentially only depends on the input size n (i.e., the
number of words in ). Indeed, the verifier VV* receives a verification key 7, primary input x, and proof 7,
and then invokes V" on these inputs. More precisely, V* (7, z, 7) actually coincides with V (7, 2/, 7) where
x’ # x is a string of 2W (n + 1) + 1 bits obtained via a deterministic mapping applied to x. (Note that a
primary input x of with n words contains Wn bits.) The mapping from z to 2’ arises from a technicality
for correctly performing input consistency. Note that the circuit reduction was already performed by G*
and is implicit in the verification key 7; thus V* itself is oblivious to the circuit reduction (up to the
already mentioned technicality about mapping x to z’).

The performance of V' as a function of the number of bits in the input was discussed in Section 3.3, and
specifically Figure 9 on page 27. So we do not produce any new graphs for V*.

2 As in Section 3.3, we conducted these experiments using single-threaded code running on a 2.4 GHz Intel E7-8870 CPU with
256 GB of RAM.

29



number of seconds

10°
104
103
10
10!
IO()

10°!
1

TinyRAM key generator —s—
. ) fircuit gel:nerator A
0> 10> 10* 105 10 107 108

time bound

108

)
2

109

number of gates

=)
2

10*
1

TinyRAM circuit —e—
1 1 1 ]
02 103 104 10° 100
time bound

10°

)
%

107

number of group elements

100

10°

10°

Gl elements —e—
G2 elements —=—
1

103

104 10°
time bound

Figure 12: On the left: running time of G* as a function of the time bound T’; also shown is
the running time of the circuit generator circ, while the remaining time is spent running G. (As
T increases, the running time of (G dominates the running time of G*.) In the center: number
of gates in the circuit C', output by the circuit generator circ, as a function of 7. On the right:
number of G1 and G group elements in the proving key output by G* as a function of 7.

number of seconds

Ll

TinyRAM prover —e—
witness map —s—
Ll 1

Ll PETY ErE—— |

10*

109 10° 107 108

time bound

Figure 13: Running time of P* as a function of the time bound 7". Also shown is the running
time of the witness map wit; the remaining time is spent running P. As T increases, the running

time of P dominates the running time of P*.

30

100



4.3 Performance for Rectilinear TSP Example

We now report the system’s performance when used for an illustrative example. The example proves and
verifies claims of membership in the rectilinear Traveling Salesman Problem (rectilinear TSP) language,
defined as follows.

A complete weighted graph G is specified by a list ((afl, Y1)y -y (Tn, yn)) where x;,y; € Z; the i-th
pair (z;,y;) specifies the coordinates in Z x Z of the i-th vertex v;; any two vertices v; and v; have
weight A(v;, vj) given by the Manhattan distance (in Z x Z) between v; and v;.

Given a complete weighted graph G, the rectilinear TSP language, Lg, is the language of pairs (s, B),
where s is a source vertex in G and B € Z_ is a weight bound, such that there exists a Hamiltonian path
p in G starting at s and with total weight at most B.

We chose above rectilinear TSP language in order to exercise various features of our system:

e Rectilinear TSP is NP-complete (when considered across all graphs G), so the proof-of-knowledge prop-
erty gives a non-trivial guarantee. Namely, proving knowledge of a Hamiltonian path of low weight
—when such a path is supposedly hard to find— is quite meaningful. (While proof of knowledge does
tend to be more useful in cryptographic examples, we opted for a more familiar “classical” NP example.)

e Valid witnesses are often not unique, so that the zero-knowledge property gives a non-trivial guarantee.

e It is easy to write a linear-time C program that decides the relation for £g: given an instance (s, B) and a
candidate witness p, the program checks that p is a valid path in G and that its total weight is at most B.
In contrast, there may not exist a linear-size circuit for this task: even a quasilinear-size circuit seems to
require routing/sorting techniques (similar to those used in our circuit generator; cf. Section 2.3). Thus,
while simple, deciding L¢ efficiently makes crucial use of random access to memory.

e Instances in the language L¢ are much smaller than witnesses: a single vertex and an integer bound, vs.
a Hamiltonian path. Hence, the time to verify a proof (which is linear in the instance size) will be much
smaller than simply running the aforementioned program to decide the language (given the full witness).

Fixing a 200-node graph G, we obtained the following.

e Compiling. We wrote a simple C' implementation of an NP decider for L¢ (so that the description of G
is hardcoded in the decider), and compiled it to TinyRAM using our GCC-based compiler. The resulting
TinyRAM program P consists of 1105 instructions. When running P on a primary input « = (s, B) and
auxiliary input w = p (specified as a list of vertices), where s = vg and p is a specific Hamiltonian path
in G of total weight at most B, P accepts after 11 001 steps.

e Key generation. Running the key generator G* took 247 minutes. The generator G* produced a proving
key with 392 153 579 group elements in G; and 36 847 976 group elements in Go; and a verification key
with 9 group elements in G; and 6 group elements in Go. Of the total time, 307 seconds were spent in
evaluating the circuit generator circ to compute C' and the remaining time was spent in running G on C.
The circuit C' (which is an intermediate value of G*’s computation) consisted of 32 047 142 gates.

e Proving. Running the prover P* took 155 minutes, and produced a proof of 12 group elements (11 in G
and 1 in G»). Of the total time, 318 seconds were spent in evaluating the witness map wit, which outputs
a satisfying assignment a for C, and the remaining time was spent in running P on (o, x, a) to compute
the proof.

e Verifying. Running the verifier V* took 0.11 seconds. Essentially this entire time was spent running V.

Straightforward optimizations will significantly improve the above running times, as discussed next.

31



4.4 Further Optimizations

Our system is a proof-of-concept prototype, not an industrial-grade implementation. In particular, we did
not put effort into any “second-order” optimizations that are standard and well-understood, but instead have
focused our effort on optimizations that are novel to our work (and are thus less understood). Nonethe-
less, for completeness, we briefly mention several standard optimizations that will significantly improve the
efficiency and scalability of our prototype.

e Parallelization. Essentially all the computations required of the generator, prover, and verifier can be
parallelized.?* In particular, routing on Bene$ networks, sorting, polynomial interpolation/evaluation,
multi-exponentiation, and others — all of these are highly-parallelizable (i.e., have polylogarithmic-depth
circuits). Parallel implementations of all of these computational tasks are well-studied, and it should not
be difficult to make our prototype leverage all available cores so to significantly reduce latency.

o Computing in blocks. Most of the computational problems mentioned in the previous paragraph achieve
excellent time complexity at the cost of large space complexity. The large space complexity poses a
serious obstacle to the scalability of the zk-SNARK to lengthy TinyRAM computations.

For example, the FFT algorithm improves over naive interpolation/evaluation, but does so at the cost of
requiring random-linear space (with random access). As long as this fits into available RAM, (quasilinear)
FFT is faster than native (quadratic) interpolation/evaluation . But for large problem sizes (e.g., such as
those arising when proving correctness of lengthy computations), RAM becomes a bottleneck. This
problem is traditionally mitigated by adopting a hybrid approach: the interpolation/evaluation problem
is divided into smaller sub-problems (the “blocks”), the FFT algorithm is used to solve (separately) each
smaller subproblem, and the solutions to the subproblems are combined using a naive algorithm. Doing
so increases time complexity, but decreases space complexity. The choice of the block size allows one to
tailor the resulting computational problem to the hardware carrying out the computation.

Similar ideas apply to mitigating the space complexity of routing on Benes networks, multi-exponentiation,
etc. Applying these will improve scalability of the implementation, by removing the memory bottleneck.

e Optimized field arithmetic. Essentially all of the computations of the algorithms of (G, P, V) — the
zk-SNARK for circuit satisfiability — consist of field operations over a large prime field. In particular,
tightly optimizing arithmetic for such fields (by taking into account the specific architecture at hand,
the specific field that is used, etc.) has a significant impact on the efficiency of these three algorithms.
Of course, optimizing arithmetic for large prime fields is a well-studied problem (e.g., it arises in many
cryptographic applications). Thus, it should not be difficult to improve the running times that we measured
in Section 3.3. (For this reason the number of field operations is arguably a more important measure of
efficiency, and in Section 3.3 we do report the number of field operations alongside running times.)

24With one exception: the actual execution of the TinyRAM program by the prover, in order to generate the execution trace,
cannot of course be parallelized (in the general case).

32



5 Extensions

For simplicity, throughout the paper we have ignored several (orthogonal) extensions of our approach that
provide additional functionality or efficiency. We now describe each of these extensions.

Program-independent offline phase. As discussed in Section 4, the key generator G* takes as input a
TinyRAM program P, input size n, and time bound 7'; then G* outputs a proving key o and verification key
7 that can be used to (respectively) prove and verify T-step computations of P on primary inputs of n words.

But what if one does not want to commit in advance, in the offline phase, to a specific program P?

It is possible to modify G* so that, in the offline phase, one only has to commit to the program size but
not the program itself: G* can take as input a program size ¢, rather than an ¢-instruction program P, so that
the output keys can work for any program with £ instructions. (In such a case, the verifier V* will receive P
as an additional input.) The modification only incurs a minor overhead in the number of gates in the circuit
C output by the circuit generator circ.

Primary inputs and programs of different sizes. As recalled in the previous paragraph, G* takes as input
a primary input size n; the output keys then work for computations on primary inputs of n words.

But what if one does not want to commit in advance to a specific input size?

It is possible to modify G* so that the output keys work for computations on primary inputs of at most
n words. This modification again only incurs a minor overhead in the number of gates.

Furthermore, if one does not want to commit in advance to a specific program size in the program-
independent offline phase described above, it is possible to carry out an analogous modification to G* so
that the output keys work for programs with at most £ instructions (rather than only exactly ¢ instructions).

In either of the above cases, if V* has oracle access to the verification key, the running time is linear in
the size of the primary input or program, rather than the respective (potentially much larger) bounds.

von Neumann architecture and self-modifying code. As discussed in Section 2.1, TinyRAM follows
the Harvard architecture paradigm: the program to be executed is stored in a separate, read-only, address
space (i.e., different from the read-write data address space). It is straightforward to define a von Neumann
variant of TinyRAM, where the code to be executed sits in the same, read-write, address space as data. In
particular, such an architecture allows for programs that access, and modify, their own code, and allows for
applications such as just-in-time compilation [GEST09].

It is possible to modify G*, with essentially no efficiency overhead, to work for the “von Neumann vari-
ant” of TinyRAM. In particular, our approach can thus be extended to verify correctness of nondeterministic
computations expressed via self-modifying programs.

33



Acknowledgments

The authors gratefully thank the members of the programming team: Ohad Barta, Lior Greenblatt, Shaul
Kfir, Lev Pachmanov, Michael Riabzev, Gil Timnat, and Arnon Yogev. We also thank Andrey Vihrov
for helpful technical discussions; Dan Bernstein, Tanja Lange, Peter Schwabe, and Andrew Sutherland
for discussions about elliptic curves; and Ron Rivest and Nickolai Zeldovich for helpful comments and
discussions. We thank Nickolai Zeldovich for the use of his group’s compute nodes.

The research leading to these results, and in particular the aforementioned programming team, has re-
ceived funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement number 240258. This work was also supported by the Center for Science of Information
(CSol), an NSF Science and Technology Center, under grant agreement CCF-0939370; by the Check Point
Institute for Information Security; by the Israeli Ministry of Science and Technology, and by the Israeli
Centers of Research Excellence I-CORE program (center 4/11).

34



A Definition of Zero-Knowledge SNARKSs

In Section 1.1 we informally introduced (publicly-verifiable preprocessing) zero-knowledge SNARKs for
boolean circuit satisfiability. For completeness, we give here formal definitions. The extension of the
definition to arithmetic circuit satisfiability (as defined in Section 3.2) is straightforward, so we omit it.>

Definition A.1. A triple of algorithms (G, P, V') is a publicly-verifiable preprocessing SNARG (o, for
brevity in this paper, simply SNARG) for boolean circuit satisfiability if the following conditions are satisfied.

1. Completeness
For every large enough security parameter \ € N, every circuit C: {0,1}" x {0,1}* — {0,1}, every
input x € {0,1}", and every assignment a € {0, 1}" with (z,a) € R¢,
_ | (e =GMo) T _
PI‘|:V(T,1‘,7T)-1‘ 7« P(o,2,0) =1.
2. Soundness
For every polynomial-size prover P*, constant ¢ > 0, every large enough security parameter A € N, and
every circuit C': {0,1}" x {0, 1} — {0, 1} of size \°,
V(ir,z,m)=1 (0,7) + G(1*,0)
) ) ) ) < I A .
Pr [ Bast (z,a) € Re ‘ (z,7)  P*(o,7) | = negl(A)
3. Efficiency
There is a universal polynomial p such that, for every large enough security parameter A € N, every
circuit C: {0,1}" x {0,1}" — {0, 1}, input x € {0,1}", and assignment a € {0, 1}" with (z,a) € Rc,
o the key generator G runs in time p(\ + |C|);
e the prover P runs in time p(\ + |C|);
o the verifier V runs in time p(\ + |x|);
e an honestly generated proof has size p(\).
offline phase online phase
(once) (any number of times)
(1/1, C) proving verification
key input key input
o X T X
G | poly(+IC]) | y
a | T R
proving G T verification assignment | p proof "V 0/1
k
® v poly(4 +[C]) poly(2 + [x])
Figure 14: Overview of offline phase. Figure 15: Overview of online phase.

In particular, we do not define here zero-knowledge SNARKSs relative to a universal relation [BGOS8]. For details, see [BCIT13].

35



A SNARG of knowledge (SNARK) is a SNARG where soundness is strengthened as follows:

Definition A.2. A triple of algorithms (G, P, V') is a SNARK (for circuit satisfiability) if it is a SNARG (for
circuit satisfiability) where soundness is replaced by the following stronger requirement:

Proof of knowledge

For every polynomial-size prover P* there exists a polynomial-size extractor E such that for every con-
stant ¢ > 0, large enough security parameter \ € N, every auxiliary input z € {0, 1}p01y</\), and every
circuit C: {0,1}" x {0,1}" — {0, 1} of size \°,

(0,7) « G(1,C)
(x,m) « P*(z,0,7) | < negl(\) .
a< FE(z,0,7)

Vir,z,m)=1

Pr (r,a) ¢ R

A zero-knowledge SNARK (or “succinct NIZK of knowledge”) is a SNARK satisfying a zero-knowledge
property. Namely, zero knowledge ensures that the honest prover can generate valid proofs for true theorems
without leaking any information about the theorem beyond the fact that the theorem is true (in particular,
without leaking any information about the assignment that he used to generate the proof). Of course, when
considering zero-knowledge SNARKS, the prover must trust the generation of the proving key o. (Thus,
combined with the fact that the verifier must trust the generation of the verification key 7, the key generator
G must be run by a party that is trusted by both the prover and verifier.)

Definition A.3. A triple of algorithms (G, P, V') is a (perfect) zero-knowledge SNARK (for circuit satis-
fiability) if it is a SNARK (for circuit satisfiability) and, moreover, satisfies the following property:

Zero Knowledge

There exists a stateful interactive polynomial-size simulator S such that for all stateful interactive polynomial-
size distinguishers D, constant c, large enough security parameter A\ € N, every auxiliary input z €
{0, 13PN " and every circuit C: {0,1}" x {0,1}"* — {0,1} of size \°,

(o,7) + G(1*,0)
(z,a) <+ D(z,0,7) | =Pr
< P(o,z,a)

(o, 7,trap) « S(1*,0)
(z,a) < D(z,0,7)
< S(z,0,z,trap)

(z,a) € Re
D(r)=1

As usual, Definition A.3 can be relaxed to consider the case in which the distributions are only statistically
or computationally close.

Multiple theorems. A desirable property (especially when the SNARK requires an expensive preprocess-
ing phase!) is the ability to generate the system’s parameters (o, 7) once and for all and then reuse them
in polynomially-many proofs (potentially generated by different provers). Doing so requires security also
against provers that have access to a proof-verification oracle. In the case of public verifiability (which is the
one considered in this paper) this multi-theorem proof of knowledge property is automatically guaranteed.
(See [BCI™13] for more details.)

36



B Summary of Theoretical Work on Succinct Verification

In Table 3 we provide a summary of theoretical work on proof systems and argument systems with succinct
verification. For more details, we refer the reader to the cited works. In the table, lightly-shaded rows are
works obtaining succinct non-interactive arguments (SNARGs); darkly-shaded rows are works obtaining
SNARGS in the preprocessing model, which is the model considered in this work.

The column “supported statements” denotes what types of computations can be succinctly verified.

The column “# online messages” denotes how many statement-dependent messages are needed for the
prover to convince the verifier. (All of the constructions require also a single offline message to set up the
system’s parameters.)

The column “offline work” denotes whether the offline generation of system parameters is as expensive as
conducting the computation, or much cheaper (namely, only a fixed polynomial in the security parameter).

The column ““secure with verifier oracle?”” denotes whether the construction is secure even against provers
that have access to a proof-verification oracle. (If not, then the construction has the so-called verifier-
rejection problem.)

The column “publicly verifiable?”” denotes whether anyone can recognize an accepting proof. When there
is more than 1 online message, public verifiability guarantees soundness only when the party verifying
the proof trusts the generation of the verifier’s online messages (besides that of the system’s parameters).

e The column “main tools” provides keywords for the main ingredients of the construction.

From a theoretical point of view, the (preprocessing) SNARG implementation presented in this work is an
optimized variant of the asymptotically-efficient construction in [BCIT13]. (See Table 3 below.)

supported # online offline secure with publicly .
references . . main tools

statements messages work verifier oracle? | verifiable?
[Kil92] NP 3 cheap yes yes PCP, CRH
[AIK10] P 2 expensive no no FHE, RE, MAC
[GGP10] P 2 expensive no no FHE, Yao GC
[CKV10] P 2 expensive no no FHE, cut-and-choose
[GKRO8]+[KR09] NC 1 cheap no no IP for Muggles, PIR
[CRR12] non-uniform NC 1 expensive yes yes IP for Muggles, PIR, CRH
[KRR13] SPACE(log®) 1 cheap no no no-signaling MIP, FHE
[PRVI2]+[GVW13]+[GKP™13] NC 2 expensive yes yes FHE, FE, Yao GC
[GLR11] NP 1 cheap no no PCP, PIR, extractable CRH
[BCCT12] NP 1 cheap no no PCP, PIR, extractable CRH
[DFH12] NP 1 cheap no no PCP, PIR, extractable CRH
[BC12] NP 1 cheap no no MIP, extractable FHE
[Gro10a] NP 1 expensive yes yes knowledge of exponent
[Lip12] NP 1 expensive yes yes knowledge of exponent
[GGPR13] NP 1 expensive yes yes QSP, knowledge of exponent
[BCIT13] (we follow this work) NP 1 expensive yes yes linear PCP, linear targeted mall.
[BCCT13] NP 1 cheap yes yes any publicly-verifiable SNARK

Table 3: Summary of work on argument systems with succinct verification.

37




C Prior Implementation Work

Implementations of arguments systems for NP with succinct verification have not been achieved by prior
work. (Not even in the preprocessing model, nor with interaction between the prover and verifier, nor for
NP-complete languages that are less convenient than the correctness of RAM computations.) In Section C.1,
we discuss prior work about implementations of delegation protocols of various flavors.’® We also discuss
an independent work of Parno et al. [PGHR13] that, like this work, studies succinct verification in the
preprocessing model. Then, in Section C.2, we discuss how previous work has addressed the problem of
reducing the correctness of program executions to low-level representations such as circuits.

C.1 Prior Implementations of Proof Systems for Verifiably Delegating Computation

Interactive proofs for low-depth circuits. Goldwasser et al. [GKRO08] obtained an interactive proof
for delegating computations of low-depth circuits: given an input of length n, a verifier can check that a
O(log S(n))-space uniform circuit of fan-in 2, size S(n), and depth D(n) is correctly evaluated on the input,
while running only in time (n + D(n)) - polylog S(n); the honest prover runs in time poly(S(n)) and re-
quires D(n)-polylog S(n) rounds of interaction with the verifier. A set of works [CMT12, TRMP12, Thal3]
has optimized and implemented the protocol of Goldwasser et al. [GKROS]; for instance, it improved the
running time of the prover to O(S(n)log S(n)), provided a GPU implementation, and carefully optimized
the protocol for circuits with “sufficiently regular” wiring patterns.

The protocol of [GKROS8] can be reduced to a two-message argument system [KR09, KRR13]. Canetti
et al. [CRR12] showed how to extend the techniques in [GKROS] to also handle non-uniform circuits, with
a two-message protocol having an expensive offline preprocessing phase.

Batching arguments. Ishai et al. [IKOO7] constructed a 4-message argument system for NP in which the
prover-to-verifier communication is short (i.e., an argument with a laconic prover [GVWO02]) by combining a
strong linear PCP and linear homomorphic encryption.?’” While their construction does not grant the verifier
savings in computation, Ishai et al. noted that their protocol yields a batching argument: an argument in
which, to simultaneously verify that £ circuits of size S are satisfiable, the verifier runs in time max{S?, ¢} -
poly()), where ) is a security parameter. (Thus, the verifier runs in time (S?/¢) - poly(\) per circuit.)

A set of works [SBW11, SMBW12, SVP"12, SBV"13] has improved, optimized, and implemented
the batching argument of Ishai et al. [IKOO7] for the purpose of outsourcing computation. In particular, by
relying on quadratic arithmetic programs (QAPs) of [GGPR13], Setty et al. [SBV ™ 13] have improved the
running time of the verifier and prover to max{S, £} - poly(\) and O(S) - poly()\) respectively.?®

Vu et al. [VSBW13] provide a system that incorporates (along with optimizations) both the batching ar-
guments of [SBW11, SMBW 12, SVP"12, SBV'13] as well as the interactive proofs of [CMT12, TRMP12,
Thal3]. The system decides, for any given instance, which of the two approaches is more efficient to use.

%6 While all prior works only achieve solutions formally weaker than a succinct argument for NP, they rely on more standard
cryptographic assumptions than those used in constructions of non-interactive succinct arguments for NP. (Or no assumptions at
all in the case of information-theoretic constructions.) In our work, like other works on non-interactive arguments for NP, we rely
on less standard cryptographic assumptions; Gentry and Wichs [GW11] have provided evidence that doing so might be inherent.

2 A strong linear PCP is a PCP in which the honest proof oracle is guaranteed to be a linear function, and soundness is required
to hold for ail (including non-linear) proof oracles. In this paper we rely on the work of Bitansky et al. [BCIT 13], who work with a
(weak) linear PCP, which is a PCP in which the honest proof oracle is guaranteed to be a linear function, and soundness is required
to hold only for linear proof oracles. See [BCIT 13] for a more detailed discussion on the differences between the two.

28 A brief technical comparison is of order here. Setty et al. [SBV™13] use QAPs within the framework of [TIKO07], while in our
work we do so within the framework of Bitansky et al. [BCIT13]. This implies significant differences in terms of cryptographic
assumptions, efficiency, and functionality. See [BCI' 13] for more details.

38



Arguments with competing provers. Canetti et al. [CRR11] use collision-resistant hashes to get a protocol
for verifying any deterministic 7'(n)-time computation, in time only O(n + AlogT'(n)), in a model where
the verifier interacts with two computationally-bounded provers at least one of which is assumed to be honest
[FK97]. Remarkably, the protocol in [CRR11] can be made to work directly for random-access machines,
and therefore does not require reducing random-access machines to any “lower-level” representation (such
as circuits). Canetti et al. implement their protocol for (deterministic) x86 programs and obtain very good
efficiency. In order to support arbitrary C programs, Canetti et al. use GCC and a special deterministic
implementation of key C standard-library functions such asmalloc and free.

Independent work on preprocessing SNARKs. Parno et al. [PGHR13] optimize and implement the
preprocessing SNARK based on quadratic arithmetic programs (QAPs) of Gennaro et al. [GGPR13]; their
proof system supports proving satisfiability of arithmetic circuits. For comparison, in our work, we also
implement a preprocessing SNARK based on QAPs for arithmetic circuit satisfiability, but we do so via the
(in our eyes) simpler framework of Bitansky et al. [BCI™13] for constructing SNARKSs from linear PCPs.

The major difference between our work and that of Parno et al. is the approach to the representation
problem: namely, how to obtain an efficient low-level (in this case, arithmetic circuit) representation for the
correctness of arbitrary program executions. As we shall discuss next, the approach of Parno et al. (unlike
ours) incurs at least a quadratic blow-up in the worst-case, like all other prior works.

C.2 Prior Implementations of Circuit Generators

All previous implementation work (except the work of Canetti et al. [CRR11] on competing provers) requires
an instance to be represented as a circuit, or other similar “low-level” representations.

While [SBW11, SMBW12, CMT12, TRMP12] do not address the problem of converting arbitrary pro-
grams to a circuit representation, [SVPT12, SBV'13] do consider the problem of programming arithmetic
circuits. Specifically, they present a solution, based on the Fairplay compiler [MNPS04, BDNPOS], for
compiling programs written in a special language called SFDL. Next, both [SVPT 12, SBV'13] convert the
output of the FairPlay compiler to the constraints required by their respective protocols.

Compared with high-level programming languages like C, SFDL is quite limited in the sense that it does
not support important primitives and has inefficient support for others. For example, SFDL does not support
loops with a non-constant number of iterations; also, it does not support recursions. Furthermore, each array
access of the form A[i|, where A is an array and ¢ is an index, is implemented via a multiplexer circuit over
the entire array. In particular, relying on a compiler such as FairPlay has a severe drawback: the circuits
it generates have size that is quadratic in the time bound 7" in the worst case, due to inefficient support of
memory accesses. So, e.g., the prover in all previous works runs in time that is Q(72) in the worst case.

Parno et al. [PGHR13] do not rely on the Fairplay compiler, but also rely on an approach with a blowup
that is at least quadratic in the worst case. Indeed, they provide a compiler for a basic subset of C that, like
SFDL, is very restrictive: memory accesses are static constants, loops are unrolled up to a static bound, both
branches of a conditional are executed, and so on. In particular, accesses to memory are inefficiently supported.

The quadratic blowup in previous work is not accidental but is due to a fundamental difficulty: how is
consistency of random-access memory achieved? As discussed (see Section 2.3.2), the naive solution of
multiplexing from memory at each time step is inefficient. Instead, in this work (see Section 2.3) we imple-
ment an efficient circuit generator: by leveraging nondeterminism and routing [BCGT13a], we generate an
arithmetic circuit whose size is only O(7"log T"). The bound holds even when a program makes use of data-
dependent loops, control flow, recursions, and memory accesses. (Indeed, the bound holds for all TinyRAM
programs.) Because most prior works support circuit satisfiability, all these prior works directly benefit from
our circuit generator in the sense that their circuit generators can be replaced with our more efficient one.
(E.g., doing so in [SBV13] or [PGHR13] ensures the prover runs in quasilinear instead of quadratic time.)

39



D Definition of Linear PCPs

In Section 1.2 we informally introduced a linear PCP to be a PCP where the honest proof oracle is a linear
function (over some underlying field), and soundness is required to hold only for linear proof oracles. For
completeness, we give here formal definitions. For more details, see [BCIT13].

Definition D.1. We say that a multivariate polynomial f: F™ — T has degree d if the total degree of f is
at most d. A multivalued multivariate polynomial f: F™ — F¥ is a vector of polynomials (f1,. .., fu)
where each f;: F™™ — F is a (single-valued) multivariate polynomial.

A linear probabilistically-checkable proof (linear PCP) system for a relation R over a field [F is one
where the PCP oracle is restricted to compute a linear function 7w : F™™ — [ of the verifier’s queries. Viewed
as a traditional PCP, 7 has length |F|™ (and alphabet F). For simplicity, we ignore the computational
complexity issues in the following definition, and refer to them when they are needed.

Definition D.2. Let R be a binary relation, F a finite field, P_pcp a deterministic prover algorithm, and
Viece @ probabilistic oracle verifier algorithm. We say that the pair (Ppcp, Vipcp) is a (input-oblivious)
k-query linear PCP for R over F with knowledge error € and query length m if it satisfies the following
requirements.

1. Syntax. On any input x and oracle T, the verifier V5. (x) makes k input-oblivious queries to m and then
decides whether to accept or reject. More precisely, Vipcp consists of a probabilistic query algorithm
Q.pcp and a deterministic decision algorithm D pcp working as follows. Based on its internal random-
ness, and independently of x, Q) pcp generates k queries q, ..., q; € F"™ to ™ and state information u;
then, given x, u, and the k oracle answers a1 = (w,qy) ,...,ar = (7, qy,), Dipce accepts or rejects.

2. Completeness. For every (z,w) € R, the output of Ppcp(x,w) is a description of a linear function
7: F™ — T such that V3. () accepts with probability 1.

3. Knowledge. There exists a knowledge extractor E\pcp such that for every linear function 7*: F" — F if
the probability that V.., () accepts is greater than ¢ then ET () outputs w such that (z,w) € R.%*

PLPCP M_PCP

di,-.-,49k; i r
= (e Em
T u | q; € "
a1, .50k | —Y— 10/1 a; = (m,q;) €F
E'DLPCP !

Figure 16: Diagram of a k-query linear PCP of length m.

PIn particular, (PLPCP7 Vchp) has soundness error e: for every x such that (z, w) ¢ R for all w, and for every linear function
7 : F™ — T, the probability that V[7cp(x) accepts is at most &.

40



An important efficiency measure for a linear PCP is the (algebraic) degree of the verifier. Specifically, we
say that (Ppcp, Vipcr) has degree (dg, dp) if, additionally the following two requirements hold.

e The query algorithm Qpcp has degree dg. Namely, there are £ polynomials py,...,p,: F¥ — F™
and state polynomial p: F* — F™, all of degree dg, such that the linear PCP queries are q; =
pi(r),...,q; = p,(r) and the state is u = p(r), for a random r € FH.

e The decision algorithm D p¢p has degree dp. Namely, for every input « there is a polynomial £, : 'tk
7 of degree dp such that t,(u, aq,...,a;) = 07 if and only if D pep(z,u, a1, ..., ax) accepts.
In such a case, we call m/’, which is the number of field elements in the u, the state length.

Honest-verifier zero-knowledge linear PCPs. We also consider honest-verifier zero-knowledge (HVZK)
linear PCPs. In an HVZK linear PCP, soundness or knowledge is defined as in a usual linear PCP, and
HVZK is defined as in a usual HVZK PCP. For convenience, let us recall the definition of a HVZK PCP:

Definition D.3. A PCP system (Pocp, Vocp) for a relation R, where Pycp is also probabilistic, is -statistical
HVZK if there exists a simulator Spcp, running in expected polynomial time, for which the following two
ensembles are §-close (§ can be a function of the field, input length, and so on):

{Spcp(x)}(x7w)e7g and {VieW(VPE”;w (x)) | T PPCP($7w)}(I,w)eR )

where View represents the view of the verifier, including its coins and the induced answers according to m.
If the above two distributions are identically distributed then we say that (Ppcp, Vocp) is perfect HVZK.

41



E An Efficient HVZK Linear PCP

We describe the HVZK linear PCP for circuit satisfiability that we designed and implemented. (See Ap-
pendix D for the definition of a linear PCP, the HVZK property, and other notions used in this section.)
The basic design of our linear PCP builds on the quadratic arithmetic programs (QAPs) of Gennaro et al.
[GGPR13]. (See Remark E.4 for a technical comparison.)

Rather than directly constructing a linear PCP for circuit satisfiability, we first construct linear PCPs for
a notationally more convenient language: satisfiability of systems of rank-1 quadratic equations over a finite
field F. As discussed below, both boolean and arithmetic circuit satisfiability are reducible to this language
essentially without any overheads.

Definition E.1. A system of rank-1 quadratic equations over F is a tuple S = ((aj, b;, cj)j.vjl, n) where
aj,bj,c; € FNM and n < N,,. Such a system S is satisfiable with an input x € F™ if there is a witness
w € F™ such that:

I. x = (wi,...,wy), and

2. (aj,(1,w)) - (bj, (1, w)) = (cj,(1,w)) forall for j € [Ng].
In such a case, we write S(x,w) = 1.
We call Ng the number of constraints, N,, the number of variables, and n the input size.

Definition E.2. The satisfaction problem of a system (of rank-1 quadratic equations) S is the relation
Rs = {(x,w) € F" x F™M : S(x, w) = 1}, its language is denoted Ls.

A boolean circuit C': {0,1}" x {0,1}* — {0,1} with o wires and 3 (bilinear) gates induces a corre-
sponding system of quadratic equations & with N,, = « variables and Ng = 3 4 h + 1 constraints. (The
h + 1 additional constraints are to ensure that the h variables corresponding to witness wires have boolean
values, and that the output gate outputs 0.) Similarly, an arithmetic circuit C': F* x F" — F! with a wires
and [ (bilinear) gates induces a corresponding system of quadratic equations S with V,, = « variables and
Nz = [+ [ constraints. Thus, we can focus on the relation R s without loss in generality or efficiency.

We prove the following claim:

Claim E.3. For any finite field F, there is a 5-query linear PCP (P_pcp, (Qupcr, Dipcp)) for Rs over F
with knowledge error %, query length 5 + N,, + Ny, state length n + 2, and degree (dg,dp) = (Ng, 2).
Moreover, Q) pcp needs to sample only a single random element of F to generate the output queries and state.
Finally, the linear PCP is %g'-statistical HVZK.

Remark E.4 (below 5 queries). As Bitansky et al. [BCI* 13] observed, the work of Gennaro et al. [GGPR13]
implies various constructions of efficient linear PCPs. Specifically, any quadratic span program (QSP) for a
relation R yields a corresponding 3-query linear PCP for R, and any quadratic arithmetic program (QAP)
for a relation R yields a corresponding 4-query linear PCP for R.

Efficient constructions of both QSPs and QAPs have the same asymptotic efficiency, but in this work
we build on the QAP approach. Indeed, while QAPs yield linear PCPs with 4 queries instead of 3 (a minor
overhead), QAPs are significantly simpler to construct than QSPs, resulting in very small hidden constants.
This property is crucial for practical applications. In fact, in our linear PCP construction we rely on an
additional query (for a total of 5 queries) in order to further simplify our construction.

42



E.1 The Construction

We now describe the construction for (P pcp, (Qipcp, Dipcp)) from Claim E.3. (Later, in Section E.2, we
discuss how to implement these algorithms efficiently.) We begin by introducing some notation. Recall that
we have fixed a system of quadratic equations S = ((aj, b;, cj);-vjl, n), where a;,b;,c; € F+Nw and
n < N,, and we are interested in the relation Rs.

Fix an arbitrary subset S of F with |S| = Ng;let S = {a1,...,an,}. Fori € {0,1,..., N}, define
the three functions A;, B;, C;: S — T as follows: for each j € [N],

Ai(ay) = a;(i) , Bi(ey) :=b;(i), Ciay) :=¢;(i) .
Then extend each function A;, B;, C; into a degree-(/Ng — 1) univariate polynomial over IF, via interpolation.
Also define Zg to be the Ng-degree univariate polynomial over I that vanishes on S.
The linear PCP prover P pcp (When given suitable inputs) generates a vector of field elements 7r that
represents his choice of (honest) linear proof oracle; we now specify how P pcp constructs 7r.

Construction E.5 (linear PCP prover algorithm). Given an input x € F™ and a witness w € F™ such that
(x,wW) € Rs, the prover P pcp works as follows:
1. draw 61, 09, O3 independently at random from FF;

2. leth = (ho, h1,...,hnN,) € FNet1 pe the coefficients of the univariate polynomial
A(2)B(z) - C(z)
H(z) .= , (1)
=) Zs(2)
of degree Ng, where A, B, C are the univariate polynomials of degree Ng that are defined as follows:
Nw
A(z) := Ap(2) + Z w;iAi(z) +01Z35(z2) ,
i=1
Nw
B(z) := Bo(2) + Y _wiBi(2) + 02Z5(2) ,
i=1
Nuw
C(Z) = C(](Z) + ZwZCl(z) + 5325(2) ;
i=1

3. output the vector 7w € F3+(NwtD+(Ne+1) ojyep py (61, 02,03, 1, w, h).

Note that H(z) is indeed a polynomial: one can verify that (x,w) € Rg implies that Zg(z) divides
A(z)B(z) — C(z). Next, we describe the linear PCP query generator Q) pcp.

Construction E.6 (linear PCP query algorithm). The query generator Q pcp works as follows:
1. draw T at random from F;

2. output 5 queries qq, . .., qs (of 5+ Ny, + Ny field elements each), constructed as follows:

field element contained at each query location, for each query

1 2 3 3 3 3 3 3 3 3 3

+1 +2 +n+1 +n+2 +Nw+1 | +No+1 | +N, +1 | ... +Nw +1

+1 +2 +N, +1
q, | Zs(1) 0 0 Ao(T) | Ai(1) An(T) | Apga(r) | ... An, (7) 0 0 0
q, 0 Zs(1) 0 By(r) | Bi(r) Bn(1) | Baga(7) | ... | Bn,(7) 0 0 0
qs 0 0 Zs(t) | Co(r) | Ci(7) Cn(1) | Crya(7) | ... Cn, (1) 0 0 0

q, 0 0 0 0 0 0 0 0 1 T 7Ne

qs 0 0 0 1 T " 0 0 0 0 0

43




3. output the state u = (uy, . .., Uny2) where u; := 7L fori € {1,...,n+ 1} and up1o := Zs(7).

Finally, the linear PCP decision algorithm D, pcp, given an input x, checks whether x € Lg, by re-
lying on the state information u produced by the query algorithm as well as the 5 field elements a; =
(t*,q),...,a5 = (7", q5), which are the answers when given a linear proof oracle 7* (potentially mali-
ciously generated by a dishonest prover).

Construction E.7 (linear PCP decision algorithm). Given an input x € F", the state information u =
(U1, ..., Un+2), and answers (ai, ..., as), the LPCP verifier D pcp accepts if and only if

n
a1a2 — a3 — QqUpto =0 and a5 — u; — inUi+1 =0.
i=1
We only sketch the (simple) proof of Claim E.3.

Proof sketch of Claim E.3. First, it is clear that the linear PCP we just described has 5 queries of 5+ Ny, + Ng
elements each, and that the state information passed from Q) pcp to D pep contains n + 2 field elements.
Regarding the degree of @ pcp: each coordinate of any query generated by () pcp is the evaluation of a
polynomial on the (random) field element 7; each such polynomial (e.g., Zg, A, and so on) has degree at
most Ng. Regarding the degree of D\ pcp, it is clear that D pcp tests the zero of two polynomials of degree 2.
Overall, we deduce that the linear PCP has degree (dg,dp) = (Ng, 2).

The knowledge error can be argued as follows: suppose that, for some x, a cheating prover produces a
vector 7T = (8%, 8%, 8%, p*, w*, h*) € B3+ (Mt D)+(Ne+1) guch that

2N,

T];)—I‘]F [‘/I_PCP(Xy u, <7T*7q1> ] <7T*7q5>) =1 ‘ (q17 s '7q57u) — QLPCP(T)i| > W .

By construction of () pcp and D, pcp, We know the above equation is equivalent to:

A (1) BE (1) = C*(7) = Zs(7) - (S0 hir ™)
and 2Ny

n . n . W )
o —i—Zw;le =1+ Z:Eﬂ'l
i=1 i=1

T7«F

where
Ny
A*(2) = p*Ag(2) + > wiAi(2) + 01 Zs(2)
=1
Nw
B*(z) := p*Bo(z) + Y _w;Bi(2) + 85 Zs(2) |,
=1

Nw
C*(2) := p*Co(2) + > _ wiCi(z) + 05Zs(z) .
=1

Thus, because the equalities involve polynomials of low-enough degree, we can deduce that they hold as
polynomial identities (in the formal variable z). In particular, we deduce that p* = 1, thatx = (wy, ..., wy).
We similarly deduce that A*(2)B*(z) — C*(z) vanishes everywhere on S = {a1,...,ay,} and thus, by

44



expanding terms, that (Ao(2) + Y22 wiAi(2)) - (Bo(2) + SN wiBi(2)) — (Co(2) + SN wiCi(2))
also vanishes everywhere on S. By construction of the polynomials A;, B;, and C;, we conclude that
(aj, (1, w*)) - (bj, (1,w*)) = (c;, (1, w*)) for each j € [INg], and thus that (x, w*) € R, as desired. (In
particular, the output of the knowledge extractor ET,(x) is defined to be w*.)

Finally, N‘ -statistical HVZK for the honest prover Ppcr can be argued as follows. If Zg(7) # 0,
because d1, do, d3 are selected uniformly and independently at random from T, it holds that a1, as, a3 are
uniform and independent field elements in [F (and thus do not leak any information about w); for a random
7, it holds that Zg(7) # 0 with probability 1 — Ng/|F|. Also, a4 is determined by a1, a2, a3, un+2 via the
constraint ajas — ag — aqun+2 = 0, so that a4 does not leak any additional information. As for as, it only
contains information about the part of w that is equal to x, which is known to the verifier. Thus, overall,
(ai,...,as,u) is a distribution that is %I -far from one that is independent of w. O

E.2 Computational Complexity of the Construction

We discuss efficiency considerations for the linear PCP ( Ppcp, (Qupcp, Dipcp)) for Rs that we just presented.
The decision algorithm D, pcp is only testing two simple quadratic equations, and computing its decision bit
is already very efficient: it only involves 2n + 9 field operations. Therefore, our discussion below focuses
on minimizing the complexity of computing the query algorithm @, pcp and the prover algorithm P pcp.

We begin by ensuring that we work in a field I with a nice algebraic structure. Specifically, we assume
that Ny is a power of 2 (this can be achieved by adding dummy constraints) and that F has a Ng-th root of
unity (as discussed in Section 3, ensuring that this is the case is not a problem in our application). So, in the
sequel, we fix w to be a principal Ng-th root of unity, and we choose S = {a, ..., an,} with a; = WL,

Computing the query algorithm. The complexity of computing @ pcp is dominated by the complexity of
evaluating each A;, B;, C; at the (random) element 7.

We first explain how to efficiently compute Ay, ..., Ay, ; a similar discussion holds for the B; and C;.
Recall the formula for Lagrange interpolation:

Hk;éj(z — o)

Ng
)= 3 ayl0)- Ly(e) . where Ly(z) =

We can also write:

Z
Zaj ) . where L}(z):= _ Zsk) .
e aj Hk;éj(aj — Q)
Because S = {a1,...,an,} = {l,w,... ,wNe~1} are the Ny-th roots of unity, computing the L;- is partic-

ularly easy. First, Zg(z) = z™¥¢ — 1. Moreover, when o, ranges over all roots of unity that are not equal to
o, the expression way, ranges over all roots of unity that are not equal to waj = 1. Therefore,

j41(2) Kt i1 Py Py w  Li(2)
and we deduce that L, (z) = w-L’(2). Thus, if we compute L (7), then we can compute Ly (7), .. ., L’Ng (1)

with only Ny — 1 additional multiplications.
We claim that L (z) = Zg(z)/Ng; this can be seen as follows. The polynomial z™e — 1 can be (always)
factored as (z — 1) - (1 + 24 ---+2e~1) or (in the field F used here) as (z — 1) - (z —w) - - - - - (z —whe D),

45



We deduce that 1 + z 4 --- + 2Vl = (z —w) - -+ - (2 — wNe™1). By setting z = 1, we conclude that
Neg=(1—-w)----- (1 —wNe~l) = Zg(2)/Ly(2), as claimed.
Lj(7)

Overall, we obtain an algorithm that, given 7 (as well as w and Ng), outputs L; (1) = Ti o for j =
1,..., Ng by using only 4N + log N field operations. Specifically, the algorithm is as follows:
¢ 7mNe —1;
A < (/Ng:
p+—1
Li(7) < M(m = p)
forj e {2,...,Ng}:
(@) A« w;
(®) p < wp;
© Ly(r) & M(r — p);
6. output Ll(T), e LNg(T>.
Then, after computing L1(7), ..., Ln,(7), computing Ag(7), ..., An, (7) only requires taking appropriate
linear combinations of these, as determined by the coefficient vectors ay, ..., ay,. Specifically, the number

S

. . T N,
of field operations to compute all the necessary linear combinations is 2> %, ||a;||o, where ||a;||o denotes
the number of non-zero coordinates in the vector a;.
Recalling the definition of Q) pcp (Which involves evaluating each A;, B;, C; at a point 7, and a few other
small computations on 7), one can see that computing the outputs of ), pcp requires only

Ng
ANg +1og Ng +2 3 (Ilayllo + IIbsllo + lesllo)
j=1

field operations. When the quadratic system S is obtained, e.g., from a circuit C' of fan-in 2, it holds that
l1ajllo, |1bjllo, [lcj|lo = O(1) for each j so that computing Qrcr requires only O(|C|) field operations.

Computing the prover algorithm. The complexity of computing P pcp is dominated by the complexity
of computing the coefficients of the Ng-degree polynomial H (see Equation 1). A natural approach to
efficiently compute the coefficients of H is via a suitable use of FFTs. We show how to do so “generically”,
and then how to choose parameters so that we can leverage particularly simple and fast FFTs.

So let us begin by introducing notation for multipoint evaluation and interpolation. Given a domain
D C F and a polynomial A(z) of degree less than |D|, we use FFT p(A(z)) to denote a “generic” FFT that
outputs the vector (A(a))aep- Similarly, we use FFT ! ((A(a))aep) to denote the inverse operation (i.e.,
given | D| points, return the polynomial of degree less than | D| that interpolates between these points on D).

We now describe how to compute P pcp in terms of the above notation. Below, we let 7' be a subset of
F with [T| = Ngand SNT = (; let T = {p1,...,Bn,}. Later we fix a convenient choice of 7. The
algorithm of P, pcp is as follows:

1. For j € {1,..., Ng}, compute:

Nu N
Al(ay) == Ao(ay) + Y widi(ay) = a;(0) + Y wia;(i)
i1 i=1

Ny, Ny
B'(aj) := Bo(ej) + > _wiBi(a;) = b;(0) + > w;b(i) , and
i=1 =1

46



Nw
C,(Oéj) = Co(Ozj) + szCZ( = C] —I— Zwlc]

i=1

2. Compute the (N — 1) coefficients of A’(z) by invoking FFT g
Compute the (N — 1) coefficients of B’(z) by invoking FFTg*
Compute the (Ng — 1) coefficients of C’(z) by invoking FFT g

(A/(Oél), e ,A/(OéNg)).
B'(on),...,C'(an,)).
C'(a),...,C'(an,)).

)
Compute the evaluation of B’(z) on T by invoking FFTr(B’(2)).
)

3. Compute the evaluation of A’(z) on T by invoking FF T (A'(z)).
(B'(2))
Compute the evaluation of C’(z) on T by invoking FF T (C'(z)).

)

4. Compute the evaluation of H'(
evaluations of A'(z), B'(z),C’

z) = (A'(2)B'(z) — C'(2))/Zs(z) on T, point-by-point by using the
(2),Zs(z)onT.

5. Compute the (N — 2) coefficients of H'(z) by invoking FFT,! (H'(81), - .., H'(BN,))-

6. Compute the Ny coefficients of H(z) := H'(z) + 624’ () + 61 B’ () + 8102 Z5(z) — 03, by directly
evaluating the sum.

7. Output the N coefficients of H(z).

Step 1 can be performed with 22?&1 (Ilajllo + [Ibjllo + llcjllo) field operations; Step 2, Step 3, and
Step 5 all involve computing FFTs on a domain of size Vg, and we will discuss their efficiency shortly;
Step 4 involves computing Zg(z) everywhere on 7', whose complexity we also discuss shortly, and then
performing 4Ny field operations; Step 6 requires O(Ng) because all the requisite coefficients have already
been computed

We choose 7' to be a multiplicative coset of S: for some £ € (F \ 5), we choose T := £S. This choice
greatly simplifies Step 2, Step 3, and Step 4, as follows.

First, Zg(z) is equal to ¢V¢ — 1 everywhere on T'. Therefore, evaluating Zs(z) on T in Step 4 only
requires 1 + log N field operations.

Moreover, FFT;1 (for Step 2), FFT (for Step 3), and FFT;1 (for Step 5) are all FFTs (or inverse
FFTs) that take only require O(/Nglog Ng) field operations, and have particularly nice algorithm for com-
puting them. Specifically, letting = be the diagonal matrix whose i-th diagonal entry is £~! and letting
S—1 ={1,w™ !, ..., wNet1} it holds that:

FFTg'() = FFTg1(-) , FFT7(-) = (FFTsoE)(:) , FFT ' () = (E ' o FFTY)() .

As for FF'Tg, it is the “standard” FFT algorithm for finite fields that relies on an Ng-th root of unity (where
Ny is a power of 2), and the main idea is to separately recurse on the even-power and odd-power coefficients
of the polynomial and then suitably combine the answers.

In sum, P pcp can be computed with

Ng
2>~ (I1ajllo + 1bsllo + llesllo ) + O(Vg log Ng)
j=1

field operations. As before, when the quadratic system & is obtained, e.g., from a circuit C' of fan-in 2,
it holds that ||a;||o, |/bjllo, ||c;]lo = O(1) for each j so that computing Ppcp requires only O(Ng log Ng)
field operations.

47



F Examples Used in Section 2.2

The graphs in Figure 4 and Figure 5 refer to specific examples of C code that we wrote in order to obtain
those benchmarks. We briefly describe the programs that we wrote. We selected a set of simple, natural
examples that demonstrate various program styles in C; these examples exercise memory accesses, integer
arithmetic, and logical calculations.

1.

Pointer chasing. Our example takes as input a permutation 7 on a domain {1,...,w} and an integer d
(we use d = 3), and computes 7%, i.e., the composition of 7 with itself d times. This example exercises
random accesses: while random access machines can compute 7% in O(d - w) time, a (naive) arithmetic
circuits for this function, using a w-to-1 multiplexer for choosing each element, has O(d -w?) size.?

Game of Life. Conway’s Game of Life [Gar70] is a cellular automaton on an m x m mesh where each
cell is initialized as either dead or alive. The game transitions from a generation to the next; in every such
transition, each cell either dies or become alive depending on the number of alive neighbors it has. Fixing
m = b, our example program checks whether, given an initial configuration, a target configuration, and
a positive integer d, the target configuration is the result of simulating Game of Life for d generations
starting from the initial configuration.

. Matrix multiplication. Our example program takes as input two square integer matrices (of the same

dimension), and multiplies them using the naive matrix-multiplication algorithm.

. Polynomial evaluation. Our example program takes as input a polynomial of some degree d and k =

d + 2 points, and evaluates the polynomial at each of the k points using the naive algorithm. Both the
coefficients and points are 16-bit integers.

. Single-source shortest paths. A single-source shortest path problem is specified by a weighted graph

G = (V,E) and a source node s € V. The goal is to find the shortest path between s and every node
in G. Our example takes as input a positively-weighted graph G (where nodes have in-degree 20) and a
source s, and finds the shortest path from s to all the nodes in GG using Dijkstra’s algorithm [Dij59].

RC4 stream cipher. The RC4 stream cipher [Gol97] maintains a 256-byte state, which it repeatedly
updates during the initial key scheduling algorithm (KSA) and, subsequently, during the repeated invoca-
tion of the pseudorandomness generation algorithm (PRGA). Every invocation of the PRGA produces a
pseudorandom sequence. Our example program takes as input an RC4 secret key, a positive integer d, and
a “target” 128-bit string ¢; then, the program initializes the KSA with the secret key, produces a stream of
d pseudorandom bytes using the PRGA, and finally checks that the 128-bit suffix of the resulting stream
equals to t.

3 A more efficient circuit implementation would represent the permutations using routing networks (with nondeterministically-

chosen switch setting), and achieve a circuit of size O(dw log w). The circuit generator that we implemented does this implicitly
using its handling of random access to memory (following [BCGT13a]), which supports arbitrary read/write access patterns.

48



References

[ABBT12]

[AF07]

[AIK10]

[ALNR11]

[AM93]
[ARMI12]

[ATM10]
[AV77]

[BBJT08]

[BBKT09]

[BC89]

[BC12]

[BCC88]

[BCCT09]

[BCCT12]

[BCCTI13]

[BCGT13]

[BCGT13a]

[BCGT13b]

[BCIT13]

José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe, Stephan Krenn, and Santiago Zanella
Béguelin. Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols. In Proceedings
of the 19th ACM Conference on Computer and Communications Security, CCS 12, pages 488-500, 2012.

Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Proceedings of the 4th Theory of Cryptog-
raphy Conference, TCC *07, pages 118-136, 2007.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification via secure
computation. In Proceedings of the 37th International Colloquium on Automata, Languages and Programming,
ICALP 10, pages 152-163, 2010.

Christophe Aréne, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler. Faster computation of the Tate pair-
ing. Journal of Number Theory, 131(5):842-857, 2011.

A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics of Computation, 61:29-68, 1993.

ARM. ARMV7 architecture reference manual. http://infocenter.arm.com/help/index. jsp?topic=
/com.arm.doc.ddi0403c/index.html, Feb 2012.

ATMEL. 8-bit AVR instruction set. http://www.atmel.com/images/doc0856.pdf, Jul 2010.

Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings. In Pro-
ceedings on 9th Annual ACM Symposium on Theory of Computing, STOC *77, pages 3041, 1977.

Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards curves. In
Proceedings of the 1st International Conference on Cryptology in Africa, AFRICACRYPT’ 08, pages 389405, 2008.

Endre Bangerter, Stefania Barzan, Stephan Krenn, Ahmad-Reza Sadeghi, and Thomas Schneider. Bringing zero-
knowledge proofs of knowledge to practice. In Proceedings of the 17th International Workshop on Security Protocols,
pages 51-62, 2009.

Jurjen Bos and Matthijs Coster. Addition chain heuristics. In Proceedings of the 9th Annual International Cryptology
Conference, CRYPTO ’89, pages 400-407, 1989.

Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs and their efficiency
benefits. In Proceedings of the 32nd Annual International Cryptology Conference, CRYPTO 12, pages 255-272,
2012.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer
and System Sciences, 37(2):156-189, 1988.

Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham. Ran-
domizable proofs and delegatable anonymous credentials. In Proceedings of the 29th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’09, pages 108-125, 2009.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS 12, pages 326-349, 2012.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for
SNARKSs and proof-carrying data. In Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 111-120, 2013.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. TinyRAM architecture specifi-
cation v1.00, 2013. URL: http://scipr-lab.org/tinyram.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical Computer Science
Conference, ITCS ’13, pages 401-414, 2013.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of probabilistically-
checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC ’13, pages
585-594, 2013.

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive arguments
via linear interactive proofs. In Proceedings of the 10th Theory of Cryptography Conference, TCC ’13, pages 315—
333,2013.

49


http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403c/index.html
http://www.atmel.com/images/doc0856.pdf
http://scipr-lab.org/tinyram

[BCKLOS]

[BDNPOS]

[Ben65]
[Ber02]
[BFLS91]
[BGO8]

[BGH05]

[BGWS8]

[BHZ87]

[BLO7]

[BP04]
[BSO8]

[BW06]

[CKLM12]

[CKV10]

[CMTI2]

[CR72]
[CRR11]
[CRR12]
[Dam92]

[DFHI12]

Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive anony-
mous credentials. In Proceedings of the 5th Theory of Cryptography Conference, TCC ’08, pages 356-374, 2008.

Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-party computation. In
Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS °08, pages 257-266,
2008.

Viclav E. BeneS. Mathematical theory of connecting networks and telephone traffic. New York, Academic Press,
1965.

Daniel J. Bernstein. Pippenger’s exponentiation algorithm. http://cr.yp.to/papers/pippenger.pdf,
2002.

L4sz16 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC *91, pages 21-32, 1991.

Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal on Computing,
38(5):1661-1694, 2008. Preliminary version appeared in CCC ’02.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs verifiable in poly-
logarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC 05, pages
120-134, 2005.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC 88,
pages 1-10, 1988.

Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short interactive proofs? Information Pro-
cessing Letters, 25(2):127-132, 1987.

Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In Proceedings of the 13th
International Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’07,
pages 29-50, 2007.

Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols.
In Proceedings of the 24th Annual International Cryptology Conference, CRYPTO 04, pages 273-289, 2004.

Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal on Computing,
38(2):551-607, 2008. Preliminary version appeared in STOC ’05.

Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Proceedings of the 25th
Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT °06, pages
427-444, 2006.

Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable proof systems and appli-
cations. In Proceedings of the 31st Annual International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT ’12, pages 281-300, 2012.

Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using fully homomorphic en-
cryption. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO 10, pages 483-501,
2010.

Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming interac-
tive proofs. In Proceedings of the 4th Symposium on Innovations in Theoretical Computer Science, ITCS ’12, pages
90-112, 2012.

Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Proceedings of the 4th Annual
ACM Symposium on Theory of Computing, STOC *72, pages 73-80, 1972.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using multiple servers. In Pro-
ceedings of the 18th ACM Conference on Computer and Communications Security, CCS 11, pages 445-454, 2011.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of computation. In Proceedings of the
6th International Conference on Information Theoretic Security, ICITS 12, pages 37-61, 2012.

Ivan Damgard. Towards practical public key systems secure against chosen ciphertext attacks. In Proceedings of the
11th Annual International Cryptology Conference, CRYPTO 92, pages 445-456, 1992.

Ivan Damgard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communication. In
Proceedings of the 9th Theory of Cryptography Conference, TCC 12, pages 54-74, 2012.

50


http://cr.yp.to/papers/pippenger.pdf

[Dij59]
[Din07]
[Edw07]
[FK97]
[FMRO6]
[FR94]
[FST10]

[Gar70]

[GEST09]

[GGP10]

[GGPR13]

[GH98]

[GKP*13]

[GKRO8]

[GLR11]
[GMV07]

[GMWS7]

[Gol97]

[GOS06a]
[GOS06b]

[Gro05]

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269-271, 1959.
Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44(3):393—
422,2007.

Uriel Feige and Joe Kilian. Making games short. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC *97, pages 506-516, 1997.

Gerhard Frey, Michael Miiller, and Hans-Georg Riick. The Tate pairing and the discrete logarithm applied to elliptic
curve cryptosystems. IEEE Transactions on Information Theory, 45(5):1717-1719, 2006.

Gerhard Frey and Hans-Georg Riick. A remark concerning m-divisibility and the discrete logarithm in the divisor
class group of curves. Mathematics of Computation, 62(206):865-874, 1994.

David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. Journal of Cryptol-
0gy, 23(2):224-280, 2010.

Martin Gardner. Mathematical games: The fantastic combinations of John Conway’s new solitaire game ’Life’.
Scientific American, 223(4):120-123, 1970.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Ka-
plan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael
Bebenita, Mason Chang, and Michael Franz. Trace-based just-in-time type specialization for dynamic languages.
In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI *09, pages 465-478, 20009.

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: outsourcing computation
to untrusted workers. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO °10, pages
465-482, 2010.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In Proceedings of the 32nd Annual International Conference on Theory and Application of Crypto-
graphic Techniques, EUROCRYPT ’13, pages 626—645, 2013.

Oded Goldreich and Johan Hastad. On the complexity of interactive proofs with bounded communication. Information
Processing Letters, 67(4):205-214, 1998.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable garbled
circuits and succinct functional encryption. In Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 555-564, 2013.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs for Mug-
gles. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 08, pages 113-122,
2008.

Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejection problem from
designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456, 2011.

Steven D. Galbraith, J. F. Mckee, and P. C. Valen¢cA. Ordinary abelian varieties having small embedding degree.
Finite Fields and Their Applications, 13(4):800-814, 2007.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem for pro-
tocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC 87,
pages 218-229, 1987.

Jovan Dj. Golic. Linear statistical weakness of alleged RC4 keystream generator. In Proceedings of the 16th Annual
International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT 97, pages 226—
238, 1997.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new techniques for NIZK. In Proceedings
of the 26th Annual International Conference on Advances in Cryptology, CRYPTO ’06, pages 97-111, 2006.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In Proceedings of the
25th Annual International Conference on Advances in Cryptology, EUROCRYPT °06, pages 339-358, 2006.

Jens Groth. Non-interactive zero-knowledge arguments for voting. In Proceedings of the 3rd International Conference
on Applied Cryptography and Network Security, ACNS °05, pages 467—482, 2005.

51



[Gro06]

[Gro09]

[Gro10a]

[Gro10b]

[GS89]

[Guel?2]

[GVWO02]

[GVW13]

[GW11]

[HT98]

[IKOO07]

[Kil92]

[KMOO1]

[KRO9]

[KRR13]

[Lei92]

[Lip11]

[Lip12]

[Mic00]

[MNPS04]

[MNTO1]

[MROS]

Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Pro-
ceedings of the 12th International Conference on Theory and Application of Cryptology and Information Security,
ASTACRYPT ’06, pages 444-459, 2006.

Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In Proceedings of the 29th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, CRYPTO ’09, pages 192-208, 2009.

Jens Groth. Short non-interactive zero-knowledge proofs. In Proceedings of the 16th International Conference on the
Theory and Application of Cryptology and Information Security, ASTACRYPT 10, pages 341-358, 2010.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the 16th International
Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 321-340,
2010.

Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Symposium on Logical Foundations of
Computer Science, pages 108-118, 1989.

Shay Gueron. Intel advanced encryption standard (AES) instructions set. http://software.intel.
com/en—-us/articles/intel-advanced-encryption—-standard-aes—instructions—set, Feb

2012.

Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover. Computational
Complexity, 11(1/2):1-53, 2002.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In Proceedings
of the 45th ACM Symposium on the Theory of Computing, STOC *13, pages 545-554, 2013.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11, pages 99-108, 2011.

Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In Proceedings of the
18th Annual International Cryptology Conference, CRYPTO 98, pages 408—423, 1998.

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs. In Proceedings of the
Twenty-Second Annual IEEE Conference on Computational Complexity, CCC 07, pages 278-291, 2007.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, STOC °92, pages 723-732, 1992.

Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and applications to electronic voting. In
Proceedings of the 20th Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT ’01, pages 78-92, 2001.

Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceedings of the 29th Annual Interna-
tional Cryptology Conference, CCC ’09, pages 143-159, 2009.

Yael Kalai, Ran Raz, and Ron Rothblum. Delegation for bounded space. In Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC *13, pages 565-574, 2013.

F. Thomson Leighton. Introduction to parallel algorithms and architectures: array, trees, hypercubes. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

Helger Lipmaa. Two simple code-verification voting protocols. Cryptology ePrint Archive, Report 2011/317, 2011.

Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, pages 169189,
2012.

Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253-1298, 2000. Preliminary
version appeared in FOCS ’94.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure two-party computation system. In
Proceedings of the 13th USENIX Security Symposium, SSYM *04, pages 20-20, 2004.

Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. New explicit conditions of elliptic curve traces for
FR-reduction. [EICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
84(5):1234-1243, 2001.

Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of the ACM, 57:1-29, June 2008.
Preliminary version appeared in FOCS *08.

52


http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set

[NS82]
[OTWT71]
[PGHR13]

[PRV12]

[Rob91]

[SBVT13]

[SBW11]

[Sch78]

[Sma99]

[SMBW12]

[StGDC]

[StGDC13]

[SVPT12]

[Thal3]

[TRMP12]

[VSBW13]

[Wak68]
[Wee05]

David Nassimi and Sartaj Sahni. Parallel algorithms to set up the Bene$ permutation network. IEEE Transactions on
Computers, 31(2):148-154, 1982.

D. C. Opferman and N. T. Tsao-Wu. On a class of rearrangeable switching networks - part i: Control algorithm. Bell
System Technical Journal, 50(5):1579-1600, 1971.

Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.
In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland * 13, pages 238-252, 2013.

Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in public: verifiable com-
putation from attribute-based encryption. In Proceedings of the 9th Theory of Cryptography Conference, TCC *12,
pages 422-439, 2012.

J. M. Robson. An O(T log T) reduction from RAM computations to satisfiability. Theoretical Computer Science,
82(1):141-149, May 1991.

Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish. Resolving the
conflict between generality and plausibility in verified computation. In Proceedings of the Sth EuoroSys Conference,
EuroSys ’13, pages 71-84, 2013.

Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification of remote
computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS *13, pages
29-29, 2011.

Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM, 25:136-145, January 1978.

Nigel Smart. The Algorithmic Resolution of Diophantine Equations. Cambridge University Press, New York, NY,
USA, 1999.

Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems for out-
sourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed System Security

Richard M. Stallman and the GCC Developer Community. GCC, the GNU compiler collection. URL: http:
//gcc.gnu.org.

Richard M. Stallman and the GCC Developer Community. GNU compiler collection internals. http://gcc.gnu.
org/onlinedocs/gccint.pdf, 2013.

Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish. Taking proof-
based verified computation a few steps closer to practicality. In Proceedings of the 21st USENIX Security Symposium,
Security 12, pages 253-268, 2012.

Justin Thaler. Time-optimal interactive proofs for circuit evaluation. ArXiv, report 1304.3812, 2013.

Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable computation with massively
parallel interactive proofs. CoRR, abs/1202.1350, 2012.

Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architecture for interactive verifiable
computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages 223-237,
2013.

Abraham Waksman. A permutation network. Journal of the ACM, 15(1):159-163, 1968.

Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming, ICALP 05, pages 140-152, 2005.

53


http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org/onlinedocs/gccint.pdf
http://gcc.gnu.org/onlinedocs/gccint.pdf

	Contents
	1 Introduction
	1.1 Succinct Verification in the Preprocessing Model
	1.2 Approach Motivation
	1.3 Contributions
	1.4 Roadmap

	2 From Correctness of Program Execution to Circuit Satisfiability
	2.1 The TinyRAM Architecture
	2.2 A Compiler from C to TinyRAM
	2.3 An Efficient Reduction from TinyRAM to Circuit Satisfiability

	3 Verifying Circuit Satisfiability via Linear PCPs
	3.1 A Transformation from Any Linear PCP
	3.2 An Efficient Linear PCP
	3.3 Performance

	4 System Evaluation
	4.1 System Overview
	4.2 System Performance
	4.3 Performance for Rectilinear TSP Example
	4.4 Further Optimizations

	5 Extensions
	Acknowledgments
	A Definition of Zero-Knowledge SNARKs
	B Summary of Theoretical Work on Succinct Verification
	C Prior Implementation Work
	C.1 Prior Implementations of Proof Systems for Verifiably Delegating Computation
	C.2 Prior Implementations of Circuit Generators

	D Definition of Linear PCPs
	E An Efficient HVZK Linear PCP
	E.1 The Construction
	E.2 Computational Complexity of the Construction

	F Examples Used in Section 2.2
	References

